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Abstract 

The purpose of this study is to investigate the use of factor scores for improving 

predictive validity in personnel selection. Recent studies have shown that general ability 

is a good predictor of future performance. However, specific factors may be important 

indicators for personnel selection as well. In the latent variable context, the hierarchical 

model which considers general and specific factors simultaneously offers possibilities for 

solving prediction problems efficiently and parsimoniously. This type of modeling is 

useful in determining the relative importance of general and specific factors as predictors 

of the criterion variable, and for improving person-job match. Two approaches are used 

in the current investigation: an artificial data is used to study the prediction of future 

performance, and a real data application using the Army Project A and the Marine Corps 

JPM enlistment and performance data is used to study the practical implications of the 

use of specific factors. 

The results of this study show that using specific factors in addition to the general 

factor as predictors provides better selection decisions. The illustration using the real 

data analyses suggests that including specific factors in predicting hands-on performance 

for most of the jobs under consideration creates gains in terms of sensitivity, specificity, 

and proportion of correct decisions. 

vi 



CHAPTER 1 

INTRODUCTION 

Test scores are widely used as the basis for personnel decisions such as selection 

and placement of employees. For example, applicants for clerical positions must pass a 

typing test; colleges require a minimum score on the Scholastic Aptitude Test (SAT); 

government employees must take Civil Service examinations; and preschool children 

must meet minimum standards on intelligence tests for admission to many private 

kindergartens (Allred, 1991). In higher education, admission test scores are commonly 

used in decision-making regarding the admission of students. In specialized training 

programs, individuals may be admitted according to their performance on related aptitude 

tests. These testing programs provide an objective method of screening individuals to 

find those who are best qualified for the situation in question. Well-known selection tests 

in the United States include the Armed Services Vocational Aptitude Battery (ASVAB) 

for selection into military jobs and the General Aptitude Test Battery employment test for 

civilian jobs. In addition, the SAT, GRE, LSAT, and GMAT are used in the selection 

process for entry into colleges and universities. 

Test scores should communicate some sense of how well a person can do a 

particular job or what aspects of the job a person can do well. Instead, scores on 

personnel selection tests currently reveal something about an examinee's relative standing 

with reference to all other examinees, which is useful for ranking applicants but is not 

very informative about how a person at any particular score level will perform a given 



job. In order for such test scores to shed light on how a person will perform in a specific 

position, such measures of job competency would need to be referenced to some external 

scale of job requirements, not merely to the performance of other potential employees on 

the same test. The interpretation of a performance test score refers to the inferences about 

job performance that can be drawn from criterion test performance. Insofar as a criterion 

measure is representative of the work that is required on the job, some kind of inference 

is warranted from the test to the job domain. Thus, the process of investing a 

performance score with meaning begins with a careful study of the job and involves 

selecting tasks for testing that adequately represent the entire domain of the job's 

requirements. 

To evaluate a selection test, we need to know whether or not the test is effective. 

The effectiveness of a testing program in selecting appropriate individuals depends on 

how well the test scores predict later performance on an objective performance measure. 

This is called predictive validity. Predictive validity indicates the extent to which an 

individual's future level on the criterion is predicted from prior test performance 

(Messick, 1989). A high degree of validity is necessary for obtaining a substantial benefit 

from using the test as a selection instrument (Cronbach & Gleser, 1965). The 

relationship between test scores and performance is often expressed as a validity 

coefficient that indicates how well the performance measure, or criterion, is predicted by 

the test. In other words, the measurement of performance should be evaluated before 

adopting any tests. 



The use of factor scores as independent variables in multiple prediction has been 

advocated in the literature (e.g., Morris & Guertin, 1977; Hsu, 1991; Muthen & Hsu, 

1993; Hsu, 1995). The superiority of factor scores as predictors was affirmed by Morris 

and Guertin's finding that factor scores led to a higher accuracy of prediction in a cross- 

validation sample than did the use of data-level variables. In addition, most latent-trait 

models have been used with tests in which performance is a function of one unobserved 

(latent) characteristic or trait, such as vocabulary level or mathematical reasoning ability 

(Lord & Novick, 1968). It is the goal of such models to estimate an examinee's standing 

on the continuous latent trait. In particular, factor score computation takes into account 

the relative contribution of each variable to the underlying trait as a function of the 

construct of a variable, as reflected in the size of the factor loading (Lord, 1980; Short, 

1990; Muthen, Kao & Burstein, 1991). In other words, factors (or latent variables) may 

be viewed descriptively as representing the parsimonious rank reduction for observation 

obtained on a specific set of subjects on a given set of variables (Wackwitz & Horn, 

1971). Therefore, factor scores should approximate the true score more closely than 

scores obtained by compound measures. 

Two approaches, psychometric and econometric, have different priorities for 

evaluating applicants. In personnel work, the traditional, psychometric, approach has 

been used to rank applicants in order of their predicted performance. Since higher test 

scores indicate a probability of better performance on the job, the simple answer offered 

by psychological measurement is that higher is better. From this point of view, job 

performance is the essential consideration, and the costs of increased performance are not 



calculated. On the other hand, because higher-aptitude personnel costs more to recruit, 

management specialists tend to use an econometric approach to questions of selection 

standards. In a military context, models for setting enlistment standards have recently 

been designed to locate the most cost-effective cutoff score (Zeidner & Johnson, 1991a, 

1991b, 1991c). These models, however, do not help to answer the question of how much 

performance is sufficient. Instead, they set enlistment standards in order to minimize 

personnel costs per unit of productivity. From this econometric point of view, cost is the 

essential consideration (Wigdor & Green, 1991). Neither of these two approaches, the 

psychometric nor the econometric, is singularly satisfactory in evaluating applicants. If 

the military is to fulfill its mission to provide for the national defense, enlistment 

standards must be set at a level in which to achieve the recruiting goals (Hogan & Harris, 

1994). Military and civilian policy-makers are interested in understanding the method by 

which qualification standards and recruit quality goals are established. Efficient 

analytical tools will provide a greater understanding of the distribution of recruit quality 

needed to maintain adequate levels of job performance. Therefore, the policy-making 

process would benefit from an approach which analyze both performance and cost (Green 

& Mavor, 1994). 

General cognitive ability theory suggests that one general ability factor underlies 

all specific cognitive abilities. Proponents of this theory believe that the underlying 

variable, g, causes specific aptitudes to have validity in predicting job performance. If it 

is true that a single factor (g) underlies specific aptitudes, and specific aptitudes do not 

provide any greater prediction than g alone, then the efficient classification of individuals 



in jobs based on specific aptitudes and group aptitudes is not a pertinent issue. However, 

if there are several factors that differentially predict performance in various jobs, then 

classification efficiency is a relevant issue. Specific aptitude theory, on the other hand, 

suggests that job performance is best predicted by one or more specific aptitudes required 

by the job, rather than by general cognitive ability. For example, a person's performance 

as an editor would be better predicted by verbal and perceptual speed abilities than by g 

alone. According to this theory, g has only an indirect relation to job performance, 

because it is mediated by specific aptitudes. This theory strongly contributes to the 

concept of situational specificity to explain differences in job requirements in different 

settings. 

In the latent variable context, the hierarchical model is one of the important 

cognitive ability theories. Gustafsson (1988) explored the hierarchical model of abilities 

that considers general and specific factors simultaneously. He proposed a general factor, 

g, that influences the performance of examinees on all tests. In addition, he mentioned a 

small number of broad factors that influence groups of tests. Hierarchical models of the 

structure of cognitive abilities offer theoretical as well as practical advantages 

(Gustafsson, 1988). Such models may resolve the conflict between theorists who 

emphasize one general ability (e.g., Spearman, Jensen, and Humphreys), and theorists 

who emphasize several specialized abilities (e.g., Thurstone, Guildford, and Gardner), by 

allowing for both categories of abilities in the model. The hierarchical approach also 

offers possibilities for solving prediction problems efficiently and parsimoniously 

(Gustafsson, 1988; Muthen, 1994). 



Recent studies have shown general ability to be a good predictor of future 

occupational performance (Ree & Earles, 1991; Earles & Ree, 1992; Olea & Ree, 1994). 

According to the development of the hierarchical ability model, the contribution of 

specific factors is an important indicator for selection and classification. In the study of 

general and specific abilities as predictors of school achievement, Gustafsson & Bailee 

(1993) investigated the relationship between aptitude variables and school achievement 

using a model of ability that allowed simultaneous identification of general and specific 

abilities. They concluded that differentiation among at least a limited number of broad 

abilities would be worthwhile. Similar models have been successfully applied to 

studying subgroup differences in mathematics achievement data (Muthen, Khoo, & Goff, 

1994). For most predictive tests, it is practical to include both general and specific 

factors in the prediction model. For example, to predict a person's performance in a 

special training program, we would be interested in knowing their ability on the factor 

related to that particular program and less concerned about their ability on other factors. 

This type of modeling is useful for finding the relative importance of general and specific 

factors as predictors of the criterion variable. Muthen and Gustafsson (1995) used this 

approach to predict job performance. Their study showed that different abilities were of 

differential important in different jobs. 

The purpose of the current study is to investigate the use of factor scores for 

improving predictive validity in personnel selection and to improve the person-job match. 

Latent variable modeling will be used to assess predictive validity. Latent variable 

modeling is useful for identifying the constructs that underlie a set of test items; it makes 



more efficient use of the test information than a model which does not use latent variables 

(Hsu, 1991; Muthen & Hsu, 1993; Hsu, 1995), and it is a useful way of explicating the 

validity of a test in predicting future performance (Gustafsson, 1988; Hsu, 1991; Muthen 

& Hsu, 1993; Hsu, 1995; Muthen & Gustafsson, 1995). This report addresses the 

question: will the approach of using both general and specific factor scores perform better 

than the method of prediction of using the general factor score only? From a broader 

perspective, this report contributes to an improvement of the person-job match, which is 

in the national interest given that it will result in better overall job performance and more 

effective utilization of the skills of selected individuals. 

The current study will use a Monte Carlo approach to assess the prediction of 

future performance. In addition to the Monte Carlo study, a real data application will be 

carried out to examine the practical implications of the use of factor scores. The Army 

Project A and the Marine Corps Job Performance Measurement (JPM) enlistment and 

performance data have been chosen as an application of the methodology to be 

considered. 



CHAPTER 2 

LITERATURE REVIEW 

The literature review is organized into four main sections. The first section 

addresses the issues of factor score determinacy and factor score estimation. The second 

section reviews the theory and practice in selection and classification. The third section 

looks at the differential assignment theory (Johnson & Zeidner, 1991). The last section 

reviews the prediction related to the contribution of g and s and the concept of cross- 

validity. 

2.1 Factor Score Determinacy and Factor Score Estimation 

Beginning with Spearman (1927), analysts believed that the factor score 

indeterminacy problem was resolvable by simply adding more observed variables in 

order to better define a factor. Cotter and Raju (1982) showed that the use of factor 

scores in a regression equation will significantly improve the prediction of population 

squared cross-validity as compared to the straightforward use of data-level variables. 

Acito and Anderson (1986) developed a simulation model to investigate the correlations 

between the true and derived common factor scores under various data conditions. 

Indeterminacy was found to depend on the level of communality and to be detected more 

accurately via image factoring than by principal axis or principal component analysis. 

Because the theoretical scores are never available, several systems for estimating 

the factor scores have been proposed. As Tucker (1971) noted, there are four well-known 



factor score estimators, as follows: (1) Thurstone proposed regression estimates of the 

factor scores, a technique which has proven to be very popular; (2) Bartlett proposed 

estimates that minimized the sum of squared residuals weighted by the reciprocals of the 

unique variances on the attributes; (3) Horst characterized the least square solution; and 

(4) Anderson and Rubin proposed a variant of the Bartlett estimates for uncorrelated 

factors. In addition, Horn (1965) classified several techniques for computing factor 

scores, which can be described as (a) "exact" procedures that are based upon some form 

of least squares calculation, and (b) "inexact" procedures in which the factor score is 

estimated as a simple linear weighted sum of variable scores. Under the system 

developed by Horn, a procedure is characterized by the type of weighting factor that is 

used. The property of the factor score estimators has been examined with respect to 

internal and external characteristics. Internal characteristics reflect the covariation of the 

estimates of other factors and with the theoretical factors. External characteristics reflect 

the relationship between the factor scores and the variables outside the factored battery. 

Despite the disagreements in the literature about factor scores, and the availability 

of several methods for constructing scores, few studies have examined indeterminacy 

directly by means of empirical or simulated data. Wackwitz and Horn (1971) started with 

. "known" factor scores and generated "observed data" using a Monte Carlo simulation to 

compare principal component scores with common factor scores derived from two 

factoring methods. Because there are several procedures for estimating factor scores, the 

question of which factor score estimation procedure is better for the purpose of prediction 

has received a major share of the attention in studies conducted by Morris (1979, 1980). 



Morris' research was based on Monte Carlo simulation techniques, and there is still a 

great need for studies comparing different factor score estimates using empirical data. 

Without empirical studies, the decision-makers may continue to fail to realize the benefits 

of factor scores in prediction. The few empirical and simulated data comparisons 

reviewed leave many unanswered questions. Empirical studies of analytic procedures 

using real data have their place, but their limitation is that the "correct" answer is not 

known. In contrast, simulation studies can start with well-defined, known parameters, 

thereby allowing one to assess the relative accuracy of techniques under different data 

conditions. 

Short (1990) found that determinacy for the general factor was robust in the 

following sense: regardless of the size of the factor loadings, the number of items in the 

model, or the number of items influenced by specific factors, the general factor 

determinacy remained high. Even when specific factor loadings were higher than those 

for the general factor, the scores were very reliable. The size of the specific factor 

loading was a major influence on the specific factor determinacy, as was the size of the 

general factor loading, although to a lesser extent. The portion of items influenced by 

specific factors was found to be more influential in obtaining reliable factor scores than 

the number of items overall. Therefore, the specific factor scores were not as reliable as 

expected. Short's study also demonstrated that specific factor scores from 

multidimensional, dichotomized data are not extremely reliable. It was suggested that the 

initial test or attitude data should be continuous and have at least moderate factor 

loadings in order to create reliable scores. 

10 



Research in the area of selection and predictive validity with latent variable 

structures (Hsu, 1991; Muthen & Hsu, 1993; Hsu, 1995) found that the factor score 

estimator performed as well as the theoretical optimal method, which is a full quasi- 

likelihood estimator (FQL). When regressing criterion on the estimates of factor scores 

in a random sample, it gave consistent estimates of regression slopes. Although the 

selected sample was not a random sample, when selection was based on the latent factors, 

or on the estimated factor scores, the estimated regression slopes were still unbiased 

(Muthen & Jöreskog, 1983). 

2.2 Selection and Classification 

The general framework of problems in prediction involves two elements: 

unknown criterion (or future performance) and known predictor. The desire is to express 

uncertainty about criteria in the light of predictors. For instance, we typically appeal to a 

model that formalizes judgment about how predictor and criterion are related. If selection 

was based on the factor scores, the regression of future performance on factor scores 

would not be distorted (Muthen & Hsu 1993). A major advantage of using factor scores 

is because the estimated factor score is a linear transformation of observed variables, the 

factor score method produces unbiased estimates of slope when selection is based on 

observed variables. 

Most research in prediction has a similar observed data pattern with missing data 

on criterion variable as shown in Figure 1.   This figure shows 10 subtests for each 

11 



applicant (/ = 1 lo N) while the criterion is observed only for the selected group (/ = 1 to 

Ns ). For the non-selected group (/ = Ns+] to N), there is no information for the 

criterion. The information from the criterion variables is collected only for those being 

selected. If the selection procedure is based on the observed predictors, the data can be 

said to be missing at random (Little & Rubin, 1987). Assuming missing at random, 

maximum-likelihood estimation of latent variable models with missing data can be 

carried out by structural equation modeling techniques (Muthen, Kaplan, & Hollis, 1987). 

In the latent variable approach, the criterion variable is regressed on the factors. 

The fact that information on the predictors is used from both the selected and non- 

selected groups adjusts for the selectivity in the selected group. This approach is 

analogous to the conventional Pearson-Lawley adjustment. Muthen and Hsu (1993) and 

Hsu (1995) showed that factor score estimates perform about as well as maximum- 

likelihood estimates with respect to estimated regression coefficients, standard errors, 

standardized coefficients, and R2. 

Research in job classification has focused on the appropriate data analysis model 

for analyzing the similarities and differences among jobs. In the research performed by 

Cornelius, Carron, and Collins (1979), the data analysis model was held constant and the 

type of job analysis data was varied to examine the effect on the resulting job 

classification decisions. It is important to realize that jobs can be similar and dissimilar 

among different levels of analysis. Cornelius et al. (1979) suggested that the selection of 

the appropriate job analysis model is at least as important as the selection of the 

appropriate data analysis model in job classification research. Also, Cornelius, Schmidt, 

12 



and Carron (1984) raised three different ways in which job analysis is important for 

selection purposes: (1) determining whether jobs are similar enough to be combined into 

a single selection system; (2) identifying knowledge, skills, and abilities (or aptitudes) 

that are important for job performance; and (3) determining whether a test can be 

transported from a setting in which it has been shown to be valid to a new setting. 

Selection tests are used to accept or reject an applicant for a job. Once an 

organization accepts an individual for employment, classification tests may then be used 

to assign an individual to a specific training program of a job from among a number of 

available opportunities. Meanwhile, the purpose of classification is to match individuals 

and jobs in a manner that maximizes aggregate performance. Classification decisions are 

a major concern in military services and are becoming an of increasing interest to 

industry. Classification is also used in counseling in order to provide guidance to 

students in the choice of a field of study or an occupation. Furthermore, classification is 

utilized in clinical diagnosis in order to aid in the choice of a course of treatment (Zeidner 

& Johnson, 1991b). Traditionally, in selection and placement decisions, only a single job 

is involved and can be accomplished with one or more predictors. The outcome of 

selection and placement is determined by an individual's predicted performance. 

Classification, however, requires multiple predictors measuring more than one dimension 

of job performance. Alley (1994) noted that the concept of classification was broadly 

defined to include selection as a special case. If there are multiple vacancies for one job 

category and the number of applicants is greater than the number of job vacancies, 

13 



selection will occur.   Classification usually implies multiple job categories and may or 

may not involve some number of nonselectees. 

Vineberg and Joyner (1989) made the standard distinction between job 

proficiency and job performance: namely, contrasting what a person knows or can do 

with what a person actually does on the job. Proficiency usually is measured by a paper- 

and-pencil or a hands-on test of job tasks, and is generally objective and reliable. Job 

performance measures, usually ratings, are generally subjective and less reliable than 

proficiency measures. Correlation between written job-knowledge measures of 

proficiency and hands-on job sample measures of proficiency were generally found to be 

low, ranging from r = 0.00 to about r = 0.30. However, when job-knowledge tests were 

constructed, based only on information directly relevant to job performance, higher 

correlations were found, ranging from r = 0.58 to r = 0.78 (Vineberg & Joyner, 1989). 

The low reliability of ratings limited their relationship with other proficiency measures, 

with only a few correlations appearing above r = 0.30. 

2.3 Differential Assignment Theory (DAT) 

The underlying thought of the differential assignment theory (DAT) approach is 

based on the concepts of classification efficiency and differential validity introduced by 

both Brogden and Horst (Johnson & Zeidner, 1991; Zeidner & Johnson, 1991a, 1991b, 

1991c; Scholarios, Johnson, & Zeidner, 1994). The concept of DAT is derived from an 

integrative review of personnel classification literature, especially the contributions of 

14 



Brogden and Horst, combined with the systematic development of methodologies for 

improving classification efficiency. 

Zeidner and Johnson (1991a) proposed DAT, postulating that several factors 

differentially predict performance in various jobs. They believe that DAT provides a 

more coherent framework for job classification, while still recognizing g as the dominant 

predictor of performance. DAT stresses the difference between predicted performance 

measures across jobs and explains classification efficiency as a function of mean 

predictive validity, mean intercorrelation among predicted performance measures, the 

number of jobs to which individuals are assigned, and the selection ratio. DAT states that 

the joint predictor-criterion space is multidimensional with useful factors contributing a 

nontrivial amount of classification efficiency in addition to the unidimensional space 

defined by the g factor (Zeidner & Johnson, 1991a). 

There seems to be ample value in tests of general mental ability and tests of 

specific abilities. The g proponents argue that the best way to classify large numbers of 

applicants in terms of probable success is with a measure of general intelligence. Other 

research also suggests a continued interest in ability measurement beyond an exclusive 

psychometric g approach. There is good reason to believe that the relevant issue is not 

whether psychometric gora measure of a specific ability is a better predictor of job 

success, but rather what are the limiting conditions to the use of either approach. Lohman 

(1994) has applied the more orthodox cognitive science paradigm to the skilled 

performance problem and has come to the same conclusion with respect to the value of a 

multi-ability view of the world.   The classic model says simply that the general factor 

15 



will account for almost all the relevant true score covariances among observed measures. 

The goal of measurement is to obtain the best possible measure of the general factor. The 

multiple-factor model assumes that performance is multidimensional and is composed of 

a number of basic distinguishable components, which are such that some people could 

perform well on one component but not as well on others. 

Scholarios, Johnson, and Zeidner (1994) illustrated that "Selection into: the 

organization is first accomplished with a single composite resembling a measure of 

general cognitive ability (g); assignment is then made to specific jobs with weighted test 

composites tailored for each job" (p. 412). Classification efficiency was measured as 

mean predicted performance determined after optimal assignment to jobs. Their study 

provided a comparison of differential assignment theory with general aptitude theory and 

validity generalization. The results provided evidence that efficient classification, using 

tailored (best weighted) test composites to optimally assign new soldiers to a set of jobs, 

is best accomplished by the design of a test battery of multidimensionality in the 

predicted performance space. The theoretical value and practical usefulness of DAT was 

supported by the finding that both longer test batteries and the use of Horst's differential 

validity index to select tests increase potential classification efficiency. 

2.4 Predictive Validity and Cross-Validity 

2.4.1 Predictive Validity in Relation to e and s 

In previous studies (Ree & Earles, 1991, 1992; Ree, Earkesm, & Teachout, 1994), 

when general (g) and specific (s) abilities were used to predict training grades and job 

16 



performance, it was found that g was the most potent predictor and that s added little to 

prediction. Ree, Earkesm, & Teachouts' study (1994) extended the finding of statistically 

significant but practically small incremental validity for specific measures to seven 

additional jobs and to new criteria. It also showed that the incremental value of the 

specific measures was small for all three criteria and demonstrated the application of 

estimates of effective sample size in the computation of adjusted multiple correlation 

coefficients. The average increment to g by measures of s was 0.21, about the same as 

was found in previous studies for both training criteria (Ree & Earles, 1991) and job 

performance criteria (McHenry et al., 1990). It is also consistent with the estimate 

provided by Hunter and Hunter (1984). Carey et al. (1994) studied the predictive 

efficiency of adding new tests to a highly g-saturated test battery for the prediction of 

both job performance and training criteria; he found increments averaging 0.02 across 

these criteria. Morales and Ree (1992) found similar incremental differences for 

predicting pilot and navigator performance that included work sample criteria. The 

results showed that g was the best predictor of pilot and navigator job performance in a 

study of 5,500 airmen. The average validity of g was 0.33 and the average increase from 

non-g was 0.05. 

Prediger (1989) challenged the conclusion (Hunter 1986; Jensen 1986; Thorndike 

1986) that general ability is more important in determining occupational level and job 

performance than specific abilities, but he presented no data on validity or incremental 

validity. His conclusion that specific aptitudes are important in performance was based 

on data showing distinct patterns of specific-aptitude means across occupations, both 

17 



among incumbents and among high school students who later entered specific 

occupations. However, he stated that validities can be equal for different occupations 

when means are different. 

Hunter (1985) reviewed meta-analyses of hundreds of studies showing that 

general cognitive ability predicts job performance in all jobs, whether'performance is 

measured objectively or subjectively. He also reviewed path analytic research consistent 

with the theory that g affects job performance primarily by improving job knowledge, but 

that general ability also affects job performance above and beyond its impact on job 

knowledge. Hunter discussed evidence that, except in a few special cases, tailoring 

aptitude composites to match the job does not improve the prediction of job performance 

above and beyond that provided by general cognitive ability. 

In the Army Project A, three types of measurement were used: (1) hands-on tests 

of job performance, (2) multiple-choice tests of job knowledge, and (3) ratings of job 

performance. Project A was designed to focus on individual differences in predictors and 

on performance measures, and to evaluate the relationship between predictors and criteria 

for a wide variety of very different individuals (Green & Wing, 1988). The Army 

researchers found that each job was composed of both elements unique to that job and 

elements shared by all jobs in the Army. The findings also showed that all predictors 

were not equally valid for the different aspects of job performance. Wise & McHenry 

(1990) also concluded that job performance is multidimensional. Their major findings 

were that different predictor equations were needed for each of the five criterion factors. 
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In addition, different prediction equations were required for the component that reflected 

proficiency in the technical tasks specific to each job. 

2.4.2 Cross-Validity 

The predictive power of a sample regression equation in the population and in 

future samples is often of primary importance to researchers. A measure widely used for 

this purpose is the squared cross-validity coefficient, R,.2. This index is-defined as the 

squared correlation of actual criterion values with those predicted from the sample 

equation for the population of interest. A natural choice as an estimator of this parameter 

is the sample squared multiple correlation (Kennedy, 1988). 

Most authors suggest splitting sample data, then using one portion for 

identification of the model and the other portion for estimation of parameters. But cross- 

validation is known to have significant restrictions. In particular, a significant loss of 

information can be expected when all available data are not used for purpose of parameter 

estimation. When sample size is large, this loss in most likely minor. But for a moderate 

size dataset, splitting data can yield seriously unstable parameter estimates. Previous 

research has shown that sample size and the ratio of predictors selected to the total in the 

set will affect validity estimation in the subset context. 

Morris and Guertin (1977) showed the superiority of factor scores as measured by 

the cross-validity correlations. They compared common factor scores to unfactored data- 

level variables as predictors in a regression equation. The Monte Carlo study by Morris 

and Guertin showed that the regression equations using factor scores resulted in less 

shrinkage as a result of cross-validation than the data-level variables in all cases. 
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Cotter and Raju (1982) conducted a study to evaluate formula-based population 

squared cross-validity and estimates of factor scores in prediction. They concluded that 

formula-based estimates of population squared cross-validity are as good as those 

obtained from the conventional cross-validation procedure. 

There are four correlations that are important in a validation study involving 

several predictors: the sample square multiple correlation (r?), the sample squared cross- 

validity correlation (rc
2), the population squared multiple correlation (p2), and the 

population squared cross-validity correlation (pc
2). The population squared multiple 

correlation is the square of the multiple correlation developed on the entire population. 

The population squared cross-validity is based on the regression weights' developed on a 

sample applied to the entire population. The most important correlation in selection is the 

population squared cross-validity, since it provides a measure of how well a regression 

equation developed on a sample will do in future sampling from the population. 

However, in most situations, the population of interest is not available and the population 

squared cross-validity correlation cannot be calculated directly. Consequently, the 

sample squared cross-validity is viewed as an estimate of population squared cross- 

validity. The cross-validation procedure does have a serious drawback in practice. If the 

original sample is small, the splitting of the sample into two subsamples of even smaller 

size is known to effect the stability of the regression equation, thus raising questions 

about the practicality of the cross-validation procedure. Cotter and Rajus' study (1982) 

suggested that the formula-based estimation of population squared cross-validity is 
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satisfactory, and there is no advantage in conducting a separate, expensive, and time 

consuming cross-validation study. 
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CHAPTER 3 

METHODOLOGY 

The present study aims to investigate whether the approach of prediction by using 

specific factors in addition to the general factor will perform better than the method of 

prediction of using the general factor score only. Technical definitions of predictive 

validity and factor score determinacy in the context of a latent variable model and the 

definition of sensitivity, specificity, and proportion of correct decisions in the context of 

the decision table are discussed and defined. In the next section, the Spearman rank-order 

correlation coefficient and the cross-validation are described as indicators of the stability 

of the prediction used in the selection and classification. The final section describes the 

design of the Monte Carlo study used to explore the use of factor scores for prediction. 

3.1 Technical Definitions 

3.1.1 Measurement Model 

The measurement model (factor analysis) is written as 

x = v + Ar) + s, 

where x contains the predictor variable and s is the residual, with covariance matrix 0. 

The matrix A consists of factor loadings and the vector r) consists of factor variables. We 

have 

E(s) = 0, Var(e) = 0 diagonal. 
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We assume 

E(TI) = OC,        Var(ii) = HF. 

Then 

Cov(x) = Ex = AvFA' + 0. 

Note that the off-diagonal elements of Sx are functions of A and HP; they do not involve 

©. ; 

For identification we may require 

¥ = /. 

This model is known as the orthogonal factor analysis model. Then AHPA' = AA', which 

leaves the indeterminacy of the multiplication of A on the right by an arbitrary orthogonal 

matrix. 

3.1.2 Predictive Validity 

Consider next the prediction equation, 

y = a + ß'r) + 5, 

where the criterion variable y is regressed on the factor scores (n). ß is the regression 

slope of y on n. The factor scores are estimated by using the information on the predictor 

variables (x) from the applicant sample. It is known that for a random sample, regressing 

y on the regression estimates of factor scores gives consistent estimates of regression 

slopes (Tucker, 1971; Hsu, 1991; Muthen & Hsu, 1993; Hsu, 1995). Even if the sample 

is not a random sample, when selection is based on the estimated factor scores, the 

regression slope of y on the factor scores is still unbiased.   In this report, predictive 

23 



validity is defined as the regression coefficients of the criterion variable y on the latent 

factor r). 

3.1.3 Regression Method of Factor Score Estimation 

Factor scores may be estimated for each latent variable in the factor analysis 

framework. For continuous variable x, the standard regression method gives the 

estimates ; 

ri^TA'CATA' +0)"'x 

when both observed and latent variables are standardized to zero mean (Harris, 1967; 

Maxwell, 1971; Tucker, 1971; Muthen, 1978). 

The procedures for the regression method of factor score estimation are: (1) 

confirmatory factor analysis on the applicant sample by the LISREL8 program in order to 

determine the factor loadings (A) and the variances of factors QV); (2) the regression 

method for computing the estimated factor scores by SAS JML using the factor model 

estimates; and (3) regression of the criterion variable on the estimated factor scores for 

the selected sample. 

3.1.4 Factor Score Determinacv 

Because the theoretical factor scores are never available, it is important to 

investigate the correlations between the true and the estimated factor scores. These 

values are the factor score determinacies. When the r|s are standardized, *F is equal to /. 

In this case, determinacy may be seen to depend on the matrix of factor loadings (A), 

E(T],r}) = Q = A' [ AA' + (I - diag (AA')]"' A. 
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The correlations between the true score (t)) and the estimated factor scores (r;) are the 

square roots of the diagonal elements of Q (Maxwell, 1971; Short, 1990). 

3.1.5 Sensitivity, Specificity, and Proportion of Correct Decisions 

A sensitivity analysis is used to evaluate how the prediction (or selection 

decision) is affected by using the general factor score only to predict the criterion 

compared to using the specific factor scores in addition to the general factor score. Allred 

(1991) illustrated that a 2 x 2 decision table provides a method for evaluating the cost or 

utility of a test score cutoff. Once the selection ratio or the cutoff has been determined, a 

simple 2x2 table can be used to display the number of successes and failures in the 

selected and rejected groups. The general form of the 2 x "2 table is shown in Figure 2. 

With this method, it is simple to determine the number of correct decisions made about 

individuals. Accepting an individual who succeeds and rejecting an individual who 

would fail are correct decisions. The proportion of correct decisions is the total of correct 

accept (TP) and correct reject (TN) divided by the total number of individuals (N). In 

Figure 2, three equations for computing sensitivity, specificity, and proportion of correct 

decisions are shown. Sensitivity is defined as the proportion of successful individuals 

who are accepted, while specificity is the proportion of failing individuals who are 

rejected. 

From the economic perspective of the employer, the worse error is to hire a poor 

worker. Therefore, the sensitivity analysis is sufficient for cost-efficient recruiting. 
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3.1.6 The Spearman Rank-Order Correlation Coefficient 

The Spearman rank-order correlation coefficient is used to correlate two 

continuous variables that are measured at the ordinal level of measurement. If the 

subjects are rank-ordered (from highest to lowest) on each of the two variables and the 

ranks are correlated using the Pearson correlation coefficient, the resulting number is a 

Spearman rank-order correlation coefficient. The Spearman rank-order correlation 

coefficient is used to evaluate the rank-ordered on the estimated criterion using different 

methods. The correlation coefficient will be computed for the ranking of the criterion 

and the ranking of the estimated criterion. 

3.1.7 Cross- Validation 

In cross-validation, the data are split into two or more subsets. One of the subsets 

is called the construction set, and is used for estimation. Predictions for the cases in the 

other subset, called the validation set, can be obtained from the model fit to the 

construction set using predictor values from the validation set. These predictions can be 

compared to the observed values of the response. 

However, cross-validation is known to have significant restrictions. In particular, 

a significant loss of information can be expected when all available data are not used for 

the purpose of parameter estimation. When the sample size is large, this loss is most 

likely minor. But for a moderate-size dataset, splitting data can yield seriously unstable 

parameter estimates. Previous research has shown that sample size and the ratio of 

predictors selected to the total in the set will affect validity estimation in the subset 

context. One useful criterion function to determine the outcome of the cross-validation is 
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the square root of the average square error of prediction (PRESS); thus, a good model 

indicates small value of PRESS (Weisberg, 1985). It is expected that the value of PRESS 

for the method of using both general and specific factors is smaller than that for the 

method of using the general factor only. 

For the simulation study as shown in Figure 3, the selected sample (Ns) is split 

into two subsets (e.g., sample 1 and sample 2). The construction set (sample 1) is used 

for identification of the model (estimation of regression slopes) and the validation set 

(sample 2) is used for estimation of criterion. For the validation set, PRESS and 

Spearman rank-order correlation are calculated according to the hierarchical factor model 

(g + s) and the single-factor model (gy). Double cross-validation' is carried out in this 

report so the procedure outlined above is applied twice (sample 2 is used for estimation 

and sample 1 is used for prediction). So, for each sample, the regression equation and the 

predicted criterion are calculated. If the results of double cross-validation are close, as 

suggested by Pedhazur (1982), we may combine the samples and calculate the regression 

equation to be used in prediction. The purpose of this method is to study the differences 

of Spearman rank-order correlation coefficients as well as the differences of PRESS 

across two models in the context of double cross-validation. 

3.2 The Monte Carlo Study 

This report aims to examine the quality of factor scores as predictors to improve 

the precision of selection and classification.   The classic model says that the general 
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factor will account for almost all the relevant true score covariances among observed 

measures. It uses only general ability as a predictor of future performance or as a 

selection criterion to screen applicants. On the other hand, the multiple-factor model 

assumes that performance is multidimensional and is composed of a number of basic 

components, which are such that some people may perform well on one component but 

not so well on others. In this report the specific factors, in addition to the general factor, 

are included as predictors. The regression method is used to estimate factor scores 

because it is a linear transformation of observed variables. The selection is based on 

factor scores so as to give unbiased estimates of regression slopes. The research question 

is: Does the method of prediction of using general and specific factor scores perform 

better than the method of prediction of using the general factor score only? 

A simulation model is developed to explore the use of factor scores in prediction 

under conditions varying the following: (1) the factor loadings for the specific factor in 

terms of high vs. low determinacy; (2) the regression slopes for the criterion regressed on 

general and specific factors; (3) the selection methods; (4) the R square; (5) the selection 

ratio; and (6) the sample size for the selected subjects. Next, the prediction of future 

performance is examined in terms of sensitivity, specificity, and proportion of correct 

decisions. In addition, two approaches, cross-validation and Spearman rank-order 

correlation, are used to evaluate the accuracy of prediction. 

The Monte Carlo study is intended to answer the following questions: How does 

the quality of factor scores affect the selection and prediction? Does the inclusion of the 

specific factor enhance the predictive validity? Does the selection based on the specific 
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factor in addition to the general factor increase sensitivity, specificity, proportion of 

correct decisions, and/or rank correlation? How reliable must factor scores be in order to 

improve predictions? How do the R square, the regression slope, the selection ratio, and 

the sample size affect the predictive validity? 

3.2.1 Design of the Monte Carlo Study 

The design of this Monte Carlo study is summarized in Table 1. '. This report 

considers 4 datasets (2 selection ratios x 2 sample sizes for the selected individuals) and 

36 latent variable models (12 models x 3 cases), resulting in 144 combinations. The three 

cases are named as g + 1 s, g + 2 s, and g + 3 s, where "g" represents the general factor 

and "s" represents the specific factor. The notation of g + 3 5 means one general factor 

plus three specific factors (sj, s2, and sß). For each of the 144 conditions, one hundred 

replications are performed. 

Table 2 shows the parameter values for each model across the three different 

cases.   The standardized factor loadings, variance of factors and criterion, regression 

slopes, standardized regression slopes, and R square are presented. 

Selected Sample Size and Selection Ratio 

In order to obtain the actual prediction situations, two different sample sizes for 

the selected individuals are studied. Selection ratios of 0.50 and 0.10 are used in the 

simulation. The sample sizes for the selected subjects are 250 and 500, corresponding to 

the applicant sample sizes of 500 and 1,000 with a 50% selection ratio, and the applicant 

sample sizes of 2,500 and 5,000 with a 10% selection ratio. 
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Selection Methods 

In the simulated data, the criterion variable is available for all applicants so the 

true selectee is determined by the observed criterion (y) and the selection ratio. Two 

selection methods are used: the estimated general factor score (gj), and the predicted 

criterion (j>) that is estimated by general and specific factor scores (g and s). These 

factor scores are computed using the regression method for all applicants. Given that 

previous research (e.g., Ree & Earles, 1991; Earles & Ree, 1992; Ree, Earles, & 

Teachout, 1994; Ree & Carretta, 1995) uses the general ability as selection criterion, the 

current study will use the same selection criterion as the standard for comparison. The 

classification of applicants as accepted or rejected is based only on the ranking of the 

estimated general factor score. In contrast, the decision method used in this report is 

based on the predicted criterion (j>) by using both general and specific factor scores as 

predictors. The purpose is to compare the efficiency of these two selection methods. 

Two types of latent variable models as shown in Figures 4 and 5 will be 

considered as examples for the g + 1 s case. The first type is a single-factor model that 

has only one general factor (gj). The second type is a hierarchical factor model that has a 

general factor (g) which influences all of the subtests (xj to xjo) as well as one specific 

factor 0) which influences some of the subtests (x<5 to XJO). In Figures 4 and 5, xj to XJO 

are the observed variables and y is the observed criterion variable. For the single-factor 

model, the criterion variable is influenced by one general factor (gj), which represents 

general ability.  For the hierarchical factor model, the criterion variable is influenced by 

30 



one general factor (g), which represents general ability, and one specific factor (s), which 

represents a special, narrow ability.   The factors are all uncorrelated with each other. 

Since the hierarchical factor models for g + 2 s and g + 3 s are similar to that for g + 1 s, 

they are not presented here. 

True Models :. 

Table 1 shows the 36 model combinations. Models 1 through 6 are used to 

differentiate the effects of predictive validity for g and s and also specific factor 

determinacy, while controlling for the value of R2 (0.4) and general factor loadings. 

Models 7 through 12 have the same pattern as described in models 1 through 6, but the 

value of R2 is set at 0.6. 

The range of g factor loadings is from 0.25 to 0.80 for all 12 models in each of the 

three cases. The range of s factor loadings for the case of g + 1 s is from 0.18 to 0.54 in 

models 1, 3, 5, l\ 9, and 11, and from 0.36 to 0.72 for models 2, 4, 6, 8, 10, and 12. In 

models 1 and 2, the standardized regression slope for g (0.54) is much higher than that for 

5 (0.32) and the variances of g and 5 are set at 1.00 and 0.80, respectively, while in 

models 3 and 4, standardized regression slopes for g (0.45) and s (0.45) are nearly 

equivalent and the variances of g and s are set at 1.00 and 0.81, respectively. In models 5 

and 6, the standardized regression slope for g (0.32) is less than that for s (0.55) and the 

variances of g and s are set at 1.00 and 0.81, respectively. Models 7 through 12 have the 

same pattern of regression slopes as described for models 1 through 6. 

For the g + 2 s case, the range of low specific factor loadings is from 0.13 (0.12) 

to 0.54; and the range of high specific factor loadings is from 0.32 (0.30) to 0.72.   In 
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models 1 and 2, the standardized regression slope for g (0.49) is much higher than that for 

sj (0.33) and S2 (0.23) and the variances of g, sj, and S2 are set at 1.00, 0.80, and 0.40, 

respectively, while in models 3 and 4, standardized regression slopes for g (0.36), sj 

(0.36), and S2 (0.37) are nearly equivalent and the variances of g, sj, and S2 are set at 

1.00, 0.81, and 0.36, respectively. Furthermore, in models 5 and 6, the standardized 

regression slope for g (0.32) is less than that for sj (0.39) and S2 (0.39) and the variances 

of g, s], and S2 are set to 1.00, 0.81, and 0.36, respectively. The parameters for models 7 

through 12 follow the same pattern described in models 1 through 6. 

For the g + 3 s case, the two sets of range for specific factor loadings are from 

0.23 (0.24) to 0.45 and from 0.23 (0.24) to 0.36. In models 1 and 2, the standardized 

regression slope for g (0.43) is much higher than that for sj (0.38) , sj (0.20), and sj 

(0.16) and the variances of g, sj, s2, and S3 are set at 1.00, 0.80, 0.60, and 0.40, 

respectively; in models 3 and 4, standardized regression slopes for g (0.32), sj (0.32), S2 

(0.31), and S3 (0.32) are nearly equivalent and the variances of g, sj, S2, and S3 are set at 

1.00, 0.81, 0.64, and 0.36, respectively; in models 5 and 6 standardized regression slope 

for g (0.31) is less than that for s] (0.37), S2 (0.49), and S3 (0.37) and the variances of g 

sj, S2, and S3 are set at 1.00, 0.81, 0.64, and 0.36, respectively . Models 5 through 12 

have a combination of regression slopes and factor variances similar to that seen in 

models 1 through 6. 

Factor Determinacv 

It is clear that increasing the number of observed variables increases the reliability 

of the factor score measurement (Acito & Anderson,  1986; Short,  1990).    In this 
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Simulation, the effects on specific factor determinacies are investigated by varying the 

factor loadings. When the general factor loadings are held constant, increasing the 

specific factor loadings should increase the reliability of the specific factor. Two sets of 

standardized factor loadings for specific factors (low X s vs. high X s) are used to 

investigate the issue of determinacy. 

As expected, increasing the size of loadings increases the factor determinacy. The 

determinacy gives information about the reliability of the factor. In the current study, the 

general factor determinacy is about 0.94 for the case ofg+ls, from 0.90 to 0.92 for the 

case of g + 2 s, and from 0.90 to 0.91 for the case of g + 3 s when general factor loadings 

are from 0.25 to 0.80. 

In the g + 1 s case, for models 2, 4, 6, 8, 10, and 12 with high specific factor 

loadings (ranging from 0.50 to 0.80), the specific factor determinacy is about 0.85. In 

contrast, for the odd-numbered models with low specific factor loadings (ranging from 

0.20 to 0.60), the specific factor determinacy is about 0.70. 

In the case of g + 2 s, models with high specific factor loadings (ranging from 

0.50 to 0.80) have the specific factor determinacies of about 0.84 and 0.71 for models 2 

and 8; and 0.85 and 0.68 for models 4, 6, 10, and 12. In contrast, models with low 

specific factor loadings (ranging from 0.20 to 0.60) have the specific factor determinacies 

of about 0.68 and 0.53 for models 1 and 7; and 0.68 and 0.51 for models 3, 5, 9, and 11. 

In the case of g + 3 s, for models 2, 4, 6, 8 10, and 12 with high specific factor 

loadings (ranging from 0.30 to 0.80), the specific factor determinacies are about 0.79, 
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0.76, and 0.75.   In contrast, for models 1, 3, 5, 7, 9, and 11 with low specific factor 

loadings (ranging from 0.30 to 0.70), the specific factor determinacies are about 0.62, 

0.72, and 0.61. 

3.2.2 Analyses 

The following steps are carried out in the Monte Carlo study: 

(1) generation of observed variables (JC, to xl0), criterion variable (y), and true 

factor scores on general (g) and specific (s) factors for N applicants as shown in Figure 6; 

(2) estimation of factor score determinacies; 

(3) estimation of parameters Q¥ and A) based on the single-factor model and the 

hierarchical factor model; 

(4) estimation of factor scores (g}, g, and s) for each individual; 

(5) obtaining a selected sample (Ns) according to the estimated general factor 

scores (gj ) and the selection ratio; 

(6) estimation of regression slopes (ßg and ßj for general and specific factors 

with the criterion using the selectees Ns from the previous step; 

(7) estimation of the predicted criterion (j>) using the estimated regression slopes 

and the estimated factor scores (this new selection method is defined as the equation 

below: 

j> = d + ßgx£+ß5xs); 

(8) obtaining a new selected sample based on y and the selection ratio; 
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(9) categorizing applicants as success or failure based on the true criterion y and 

selection ratio ; 

(10) computing sensitivity and specificity for the classifications of the true 

criterion (y) and the predicted criteria (yg. vs. j>£+-); 

(11) computing the Spearman rank-order correlation coefficient between the rank- 

ordered y and the rank-ordered yg ; 

(12) computing the Spearman rank-order correlation coefficient between the rank- 

ordered y and the rank-ordered yg+s; 

(13) double cross-validation: 

a) splitting of the selected sample Ns into two subsets (labeled as sample 1 and 

sample 2), the construction set for estimation and the validation set for prediction (see 

Figure 3), 

b) estimation of the criterion function, the square root of the average squared error 

of prediction, the equation of PRESS is defined in Figure 3, 

c) computing of the Spearman rank-order correlation coefficient between the 

rank-ordered j> and the rank-ordered y, 

d) repeating steps a through c, where sample 2 is for estimation and sample 1 is 

for prediction. 
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CHAPTER 4 

RESULTS OF THE MONTE CARLO STUDY 

In this chapter, the results of the Monte Carlo study are presented. The purpose of 

the Monte Carlo study is to examine the quality of factor scores as predictors to improve 

the precision of selection and classification of applicants. First, the results of 

classification and Spearman rank-order correlation coefficient are described and 

summarized. Next, the results are described as a function of selection methods, selection 

ratio, and sample size. The effects of model features in terms of R square, standardized 

regression slope, and factor loadings are then presented. Jhe last section shows the 

increment of prediction from the specific factors. 

4.1 Results of Sensitivity, Specificity, and Proportion of Correct Decisions 

The analysis results are summarized in Tables 3 through 5 for g + 1 s, g + 2 s, and 

g + 3 s, where the classifications in different combinations of sample sizes for the 

selected individuals, selection ratios, models, and selection methods are shown.   The 

pattern of results is virtually identical for all of the models, so only one set of results is 

shown for g + 1 s, g + 2 s , and g + 3 s. 

g + 1 s 

Model 1 in the first section, defined as N=250, R=0.5 in Table 3, shows the 50% 

selection ratio (R=0.5) in the sample of 500 applicants (250/0.5=500). The first block of 
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gj presents selection results using the method in which the predictive criterion is based 

on the estimated general factor score (gj). The results show that 68.75% of the 

successful subjects were also selected by the predictive criterion using gj, but that 

31.25% (1 - 68.75%) of the successful subjects were excluded by this criterion. The 

results show that about 156 subjects (500 x 31.25%), or 31.25% of the applicants, are 

misclassified by the traditional method (g7). In contrast, the second block of g + 1 s in 

Table 3, using both estimated general and specific factors (g + 1 s), shows that 69.62% 

of the successful subjects are selected according to the predictive criterion (j>). Of the 

successful subjects, 30.38% are not selected by the new criterion. The results show that 

about 150 subjects, or 30.38% of the applicants, are misclassified by the new method: 

The third block of difference shows the increase in sensitivity, specificity, and proportion 

of correct decisions that occurs when using specific in addition to general factors as 

predictors. It shows that there is an increase of 0.87% for sensitivity, specificity, and 

proportion of correct decisions in model 1 with a 50% selection ratio and sample size 250 

for the selected subjects. 

Z + 2s 

Model 8 in the second section, defined as N=250, R=0.1 in Table 4, displays the 

10% selection ratio (R=0.1) in the sample of 2,500 applicants (250/0.1). The results 

show that 47.88% of the successful subjects were also selected by the predictive criterion 

using gj, but 52.12% of the successful subjects were excluded by this criterion. There 

are about 260 subjects, or 10.42% (1 - 98.589%) of the applicants, who are misclassified 
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by the gl method. In contrast, using both estimated general and specific factors (g, sj, 

s2, and s3) shows that 50.39% of the successful subjects are chosen according to the 

predictive criterion (y). Of the successful subjects, 49.61% are not selected by the new 

criterion. There are about 248 subjects, or 9.92% of the applicants, who are misclassified 

by the g + 3 s method. Furthermore, there is ail increase of 2.50% for sensitivity, an 

increase of 0.28% for specificity, and an increase of 0.50% for the proportion of correct 

decisions. 

z + 3s 

Model 12 in the fourth section, defined as N=500, R=0.1 in Table 5, shows the 

10% selection ratio (R=0.1) in the sample of 5,000 applicants (500/0.1). The first block 

°f Si presents selection results using the method in which the predictive criterion is 

based on the estimated general factor score (gj). The results show that 34.97% of the 

successful subjects were also selected by the predictive criterion using gj, but 65.03% of 

the successful subjects were excluded by this criterion. Because the criterion information 

is observed for all applicants, the results show that about 650 subjects or 13.01% (1 - 

86.99%) of the applicants are misclassified by gj method. In contrast, the second block 

of g + 3 s in Table 5, using both estimated general and specific factors (g, s}, s2,and 

s3), shows that 44.39% of the successful subjects are selected according to the predictive 

criterion (j>). Of the successful subjects, 55.61% are not selected by the new criterion. 

The results show that about 556 subjects, or 11.12% of the applicants, are misclassified 

by the g + 3 s method.  The third block shows that there is an increase of 9.42% for 
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sensitivity, an increase of 1.05% for specificity, and an increase of 1.88% for the 

proportion of correct decisions in model 12 with a 10% selection ratio and sample size 

500 for the selected subjects. 

Figures 7 through 9 present the plots of sensitivity, specificity, and proportion of 

correct decisions across four combinations of sample sizes for the selectees and selection 

ratios for g + 1 s, g + 2 s, and g + 3 s, respectively. Each plot shows two selection 

methods and displays by ordering the new method (general plus specific factors). Figures 

10 through 12 show the difference in sensitivity, specificity, and proportion of correct 

decisions between the method of using the general factor only as predictor and the 

method of using the general and specific factors as predictors for g+\ s, g + 2 s,andg + 

3 s cases, respectively. 

4.2 Results of Spearman Rank-Order Correlations 

Spearman rank-order correlations are obtained from the total applicant sample and 

the cross-validation sample. 

4.2.1 Applicant Sample 

The Spearman rank-order correlation coefficients between the rank-ordered true 

criterion and the rank-ordered estimated criterion are given in Tables 3 through 5 for the 

cases of g + 1 s , g + 2 s, and g + 3 s, respectively. These coefficients are computed for 

all applicants. Figures 13 through 15 present the plots in ascendant order for the new 

approach. The results agree with the analyses of sensitivity, specificity, and proportion of 

correct decisions.. It is observed that the pattern of results for rank correlation is similar 
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to that for classification.   Moreover, the results are not affected by selection ratio and 

sample sizes for the selected subjects.  However, the method of using the specific factor 

in addition to the general factor to predict the rank-ordered criterion performs better than 

the method of using the general factor alone to predict the rank-ordered criterion. 

4.2.2 Cross- Validation Sample 

The summary of cross-validation is shown in Tables 6 through 8.- Figures 16 

through 18 also display the difference of Spearman rank-order correlation and the 

difference of PRESS for each of the subsamples by using different selection methods. 

The comparison between these two subsamples (labeled as sample 1 and sample 2) is 

presented in these figures. 

As expected, the value of the rank-order coefficient obtained in the subsample of 

cross-validation is less than that attained in the total applicant sample. It is important to 

note that the value of difference in the cross-validation is much greater than the value of 

difference obtained in the applicant sample. 

Furthermore, examining the values of PRESS across sample 1 and sample 2, it 

shows that the values in the hierarchical models are smaller than those in the single-factor 

models. These values of PRESS indicate that the prediction of using general and specific 

factors as predictors results in smaller amount of prediction error. In summary, 

comparisons across the subsamples, the results of rank correlation and PRESS are stable. 
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4.3 Effects of Selection Methods 

In summary, Tables 3 through 5 and Figures 7 through 15 show that the prediction 

approach of using general and specific factor scores performs better than the method of 

using an estimated general factor score alone. By introducing the specific factor as 

predictor, this approach not only increases the precision of prediction in relation to the 

Spearman rank-order correlation, but also tends to produce efficient classification in 

terms of sensitivity, specificity, and proportion of correct decisions. 

The results for cross-validation are similar to the results described above except 

for a few cases which show a negative difference. It is observed that the rank coefficients 

obtained from cross-validation are smaller than those obtained from the applicant sample 

but the increment'is more notable for the results of cross-validation. 

4.4 Effects of Selection Ratio and Sample Size 

Given a particular sample size for the selected subjects, when the selection ratio 

increases, the proportion of successful individuals who are accepted (sensitivity) 

increases, the proportion of failing individuals who are rejected (specificity) decreases, 

and the proportion of correct decisions decreases. On the basis of this simulation, when 

the selection ratio decreases the difference in sensitivity between the two methods 

increases. 

Comparing two sets of plots with the same number of selectees (N=250 or 

N=500) in Figure 10, the results show that the lower selection ratio leads to the larger 

increase of difference in sensitivity and to the smaller increase of difference in specificity 
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and proportion of correct decisions. The same phenomena as described above are 

observed in Figures 11 and 12. Figures 7 through 9 also present information as to how 

the selection ratio affects the results of classification. 

Two different sample sizes for the selected subjects were studied to investigate the 

effect of sample size on prediction. The results show that the sample size for the 

selectees does not;affect sensitivity, specificity, and proportion of correct decisions. In 

comparing two sets of plots with the same selection ratio in Figures 7 through 12, we 

observe that increasing the number of selectees does not change the results of 

classifications. The patterns of these results are very similar. 

In the cross-validation, the sample size is decreased to 125 and 250 for each 

subsample to compute rank coefficient. As expected, the coefficients are smaller than 

those obtained from analyzing all applicants; in contrast, the difference in relation to the 

increment from the specific factor becomes more notable. It is concluded that selection 

ratio and sample size for the selected subjects have effects on rank coefficients. As 

sample size for the selected subjected or selection ratio increases, Spearman rank 

correlation coefficient increases. While the increment of difference depends on the 

increase in sample size for the selected subjects and the decrease of selection ratio. 
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4.5 Effects of Models 

Three elements, R square, standardized regression slope, and determinacy, 

generate 12 (2 x 3 x 2) different conditions for each of the three cases. The following 

section addresses the effect for each factor separately. 

4.5.1 R Square , ; 

It is important to note that high R2 value will enhance the precision of selection 

and classification. The results show that the classifications from models with an R2 value 

of 0.6 are more accurate than those with an R2 value of 0.4. The high value of R2 

increases the value of the Spearman rank-order correlation coefficient in both the 

applicant sample and the cross-validation sample. 

4.5.2 Standardized Regression Slopes 

As expected, controlling for the factor loadings and R2, the accuracy of 

classification by using multiple predictors is influenced by the value of the regression 

slope on the specific factor relative to that of the general factor. Considering models 1,3, 

and 5 (see Figure 7), the values of sensitivity, specificity, and proportion of correct 

decisions are in descendant order as ßg* > ß/ (model 1), ßg* » ß/ (model 3), and 

ßg   < ßs   (model 5). Using models 8, 10, and 12 as another example, the same pattern 

is observed in that model 8 has the highest values of sensitivity, specificity, and 

proportion of correct decisions. 
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When comparing the classification using only the general factor score to the 

classification using both general and specific factor scores, it may be noted that the 

greatest gain from the method of using general and specific factor scores is found in 

model 12, which contains a high value of ß%. If the values of R2 and factor loadings are 

held constant, the effects of ß* could be examined among models 1,3, and 5; or models 

2, 4, and 6; or models 7, 9, and 1 l;'or models 8, 10, and 12. It is observed that in the case 

of ß g < ß s, the prediction of using specific factors in addition to the general factor does 

much better than the prediction without using specific factors as predictors. The results 

of classification are similar to the results of Spearman rank-order correlation among these 

model comparisons. 

The same phenomenon is observed in the results of cross-validation. Specifically, 

for models with ß g < ß s, the differences of Spearman rank-order correlations between 

g + s and g, are the greatest.   Comparisons of g + s to gj in the case of g + 3 s and 

N=500, R=0.1 in Table 8, model 12 (ß*g < ß*,) results in an increase of 0.274 and 0.282 

for Spearman rank-order correlation in sample 1 and sample 2, respectively; the 

increments for model 8 (ß*g >ß*s) are 0.068 and 0.059 in sample 1 and sample 2, 

respectively; the increments for model 10 (ß*g » ß\) are 0.220 and 0.223 in sample 1 

and sample 2, respectively. 
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4.5.3 Factor Loadings 

When the regression slopes and the value of R2 are held constant, the value of 

factor loadings (factor; determinacy) will affect the prediction in terms of sensitivity, 

specificity, proportion of correct decisions, and Spearman rank-order correlation 

coefficient. A higher value of factor determinacy will improve the accuracy of 

prediction. The same effects of Ifactor loadings can be observed in the results of cross- 

validation. 

4.6 The Increment of Prediction From the Specific Factors 

The increment ■ of prediction from the specific factors is evaluated by the 

classification and Spearman rank-order correlation coefficient for the applicants.   The 

approach of cross-validation is also used for detecting the same effects on Spearman 

rank-order correlation coefficient. 

4.6.1 The Gains in Classification 

Looking at the results for g + 1 s, it is noted that the range of difference for 

sensitivity is from 0.39% to 11.58%; the range of difference for specificity is from 0.09% 

to 6.48%; and the range of difference for proportion of correct decisions is from 0.16% to 

6.48%. In the situations with a 10% selection ratio, the largest increment of sensitivity is 

about 11% in models 11 and 12, and the second largest increase is about 7% in models 5 

and 6. There is a similarity among these four models. That is, the regression slope for 

the specific factor is greater than the weight for the general factor. It is observed that 

models 1,2, 7, and 8 have a smaller amount of increase for sensitivity. When the specific 
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factor with low regression slope, the difference of sensitivity between the gj method and 

the g + 1 s method decreases. For models with equivalent slopes for general and 

specific factors (models 3, 4, 9, and 10), the gain of sensitivity is about 3% to 4% for an 

R2 value of 0.4 and 5% to 6% for an R2 value of 0.6. 

In Figure 7, each plot is presented by ordering the value of sensitivity, specificity, 

and proportion of correct decisions for g + 1 s among the twelve models. As expected, 

model 5 has the lowest value of sensitivity, specificity, and proportion of correct 

decisions. In contrast, model 8 has the highest value of sensitivity, specificity, and 

proportion of correct decisions. The prediction model with low R2, low determinacy on 

specific factor, and low regression weight on specific factor tends to produce the least 

accurate results of selection and classification. If the specific factor plays an important 

role in the future prediction, the strategy of including the specific factor as predictor will 

improve the accuracy of selection and classification. 

Similarly, the pattern of results for g + 2 s and g + 3 s is obtained as that for g + 1 

s. Here, model 5 for g + 1 s (see Table 3) is chosen to be an example for demonstration. 

The difference shows an increase of 4% of the successful applicants who should be 

selected in the cases of 50% selection ratio, while in the cases using a 10% selection ratio, 

the difference increases 7% of the successful applicants who should be selected. 

4.6.2 The Gains in Spearman Rank-Order Correlation Coefficient 

The range of difference for the Spearman rank-order correlation is from 0.010 to 

0.164 for the g + 1 s case, from 0.005 to 0.072 for the g + 2 s case, and from 0.002 to 
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0.132 for the g + 3 s case in the applicant sample. In addition, for the subsamples in 

cross-validation, the range of difference for the Spearman rank-order correlation is from 

0.013 to 0.314 for the g+ls case, from -0.003 to 0.185 for the g + 2 s case, and from - 

0.008 to 0.282 for the g + 3 5 case. 
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CHAPTER 5 

REAL DATA APPLICATION 

The findings reported from the simulation study point to benefits potentially 

obtainable from an effective selection and classification approach. The aim of this real 

data analysis is to provide an application of the use of factor scores as predictors in the 

context of selection and predictive validity. Analyses are performed for each of the nine 

Army Project A jobs (Campbell & Zook, 1991, 1992) and two jobs from the Marine 

Corps Job Performance Measurement (JPM1) Project using hands-on job performance as 

the criterion. The results of classification are evaluated by Spearman rank-order 

correlation coefficient, sensitivity, specificity, and proportion of correct decisions. 

5.1 The Army Project A and the Marine Corps JPM Data 

The Armed Services Vocational Aptitude Battery (ASVAB) is the test battery 

which the United States Military Services have used since 1976 to determine the 

cognitive qualification of applicants for service. The battery serves both to determine 

whether applicants meet minimum enlistment standards and to aid in determining the 

specialty area in which an applicant might most benefit from advanced training. In the 

Army Project A and the Marine Corps JPM, additional tests have been used to extend the 

range of abilities covered by the ASVAB. 

The Marine Corps JPM data have been kindly made available by Neil B. Carey at the U. S. Marine Corps. 
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5.1.1 Sample 

The data analyzed for this report are from the nine different jobs of Batch A of the 

Army Project A Concurrent Validity Study and two jobs of the Marine Corps JPM data. 

Table 9 lists the nine Army jobs (Infantryman, Cannon Crewman, Tank Crewman, Radio 

Operator, Vehicle Mechanic, Motor Transport, Administrative, Medical, and Military 

Police) and two Marine jobs (Helicopter Mechanic and Automotive Mechanic) and gives 

the number of soldiers included in the present analyses. 

5.1.2 Variables 

A listing of predictor measures is given in Table 10. It lists 10 ASVAB subtests, 

12 Army Project A subtests, and 8 subtests from the Enhanced Computer Administration 

Test (ECAT). 

The Armed Services Vocational Aptitude Battery (ASVAB) includes ten tests: 

General Science, Arithmetic Reasoning, Word Knowledge, Paragraph Comprehension, 

Numerical Comprehension, Coding Speed, Auto and Shop Information, Math 

Knowledge, Mechanical Comprehension, and Electronics Information. This battery 

measures reasoning, spatial visualization, psychomotor abilities, and working memory. 

The twelve Army Project A subtests include six paper-and-pencil spatial tests: 

Assembling Objects, Maps, Mazes, Object Rotation, Orientation, and Figural Reasoning; 

and six computerized perceptual/psychomotor tests: Target Tracking Test 1, Target 

Tracking Test 2, Target Identification Test-Time, Target Identification Test-Hits, 

Memory Search Test-Time, and Memory Search Test-Hits. 
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The Enhanced Computer Administration Test (ECAT) battery consists of nine 

tests. Three of them are cognitive ability tests that require computer administration: 

Integrating Details, Mental Counters, and Sequential Memory. Three tests are 

psychomotor tests reproduced from the Army Project A: One-hand Tracking, Two-hand 

Tracking, and Target Identification. Three of the tests, Assembling Objects, Spatial 

Orientation, and Figural Reasoning, are computer-administered versions of Project A 

paper-and-pencil spatial tests (Wolfe, 1994). 

ASVAB and the extended Army Project A subtests scores are available for the 

Army Project A while ECAT and ASVAB scores are available for the Marine Corps JPM 

data. ASVAB scores are available for the entire applicant population. The hands-on job 

performance criterion scores are available only for the selected population and differs 

across jobs. 

5.2 Structural Models 

In the Army Project A and the Marine Corps JPM data, additional tests have been 

similarly used to extend the range of abilities covered by the ASVAB. In both cases, the 

tests have a structure similar to the hierarchical model described earlier. According to the 

modeling of Gustafsson and Muthen (1994), the most important factors are Gf (general 

factor interpreted as fluid intelligence), Gc (crystallized intelligence), Gv/Mech (visual 

perception and mechanical knowledge), Speed (perceptual speed factor), Math (math 

knowledge), and Psymotor (general psychomotor speed). 
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The current analyses use the model from the applicant population factor solution 

of Gustafsson and Muthen (1994), which was based on the ten ASVAB subtests and 

twelve extra variables from Project A. This solution was obtained from an analysis of a 

covariance matrix obtained by a standard Pearson-Lawley adjustment made to the 

covariance matrix for the sample of all nine Army Project A jobs (Gustafsson & Muthen, 

1994; Muthen & Gustafsson, 1995). The same model is also applied to the Marine^ Corps 

JPM data which includes the ten ASVAB subtests and eight ECAT variables. 

Two models, the single-factor model and the Gustafsson-Muthen hierarchical 

latent variable model, are used as the differential selection method for this study. For the 

single-factor model, there is only a general factor (gj) which influences the performance 

of examinees on all tests. The hierarchical model of abilities contains both general and 

specific factors. The factor structure for ASVAB and Project A subtests was found to be 

very close to that bf the factor structure for ASVAB and ECAT subtests (Gustafsson & 

Muthen, 1994). Tables Al and A2 (in Appendix A) show the factor structures for the 

Army Project A and the Marine Corps JPM datasets, respectively. 

The hands-on job performance variable is regressed on the six factors defined in 

the Gustafsson-Muthen model (1994). Based on the missing data theory and the Pearson- 

Lawley adjustment, the regression slopes of the criterion on the factors are estimated by 

the regression method using the job samples. The factor scores are calculated for each 

individual as the predictors of job performance. Because the factor score coefficients are 

estimated from the applicant population factor model, the selective nature of the job 

samples is also considered. 
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For each job sample, both the Gustafsson-Muthen model and the single-factor 

model are obtained so we can compare the predictive validities across jobs. Furthermore, 

the predicted criterion scores can be estimated by these two different approaches. This 

report investigates whether the specific factors make a greater difference in predicting 

hands-on performance than the general factor does for each job. 

5.3 Procedure of Analyses 

Based on the strategy of the artificial data analyses and the available data patterns, 

the following analysis procedure is carried out: 

Step 1. Obtain the measurement models based on the Gustafsson-Muthen model 

and the single-factor model; 

Step2. Estimate factor scores (g + 5s vs. gj) using the regression method 

(Lawley & Maxwell, 1971); 

Step 3.   Estimate the factor score determinacies; 

Step 4. Specify the cutoff score (the top 50 %) based on gj for obtaining a 

selected sample Ns; 

Step 5. Estimate the regression slopes (ßg and ßs) for general and specific 

factors with the hands-on job performance (y) using the selected sample (Ns); 

Step 6. Estimate the predicted hands-on job performance (y) using the 

estimated factor scores and the estimated regression coefficients; 

Step 7.   Obtain a selected sample based on y; 
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Step 8. Classify the true successful subjects based on the observed hands-on job 

performance (y); 

Step 9. Compare rank correlation between the observed hands-on job 

performance (y) and the predicted hands-on job performance (j>); 

Step 10. Perform sensitivity and specificity analyses to compare the results of 

different prediction methods. 

In order to obtain the method corresponding to the simulation analyses, the top 

50% of each job sample based on the observed hands-on job performance are viewed as 

true successful candidates in Figure 2 terms. Because of this, the analyses of sensitivity, 

specificity, and proportion of correct decisions can be carried out. 

As will be seen, specific factors are not all significant for all 11 of the jobs. An 

alternative way of estimating the predicted criterion scores is to use the Gf factor in 

addition to the significant specific factors as predictors. The notation of g + 5s means 

that the predictors contain the Gf factor and the 5 specific factors while the notation of 

g + s means that the predictors include the Gf factor and the specific factors which are 

significant. Because the regression equations differ across the 11 jobs, the approach of 

g + s has a diverse combination of predictors for each job. The notation of gj denotes 

that the general factor defined in the single-factor model is the only predictor. Thus, 

there are three selection methods for classifying individuals. 
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5.4 Results 

Descriptive statistics for the estimated factor scores and the hands-on job 

performance scores are shown in Table 11. Table 12 shows the estimates of the 

standardized prediction equation and the adjusted R square for each job sample. Table 13 

displays the estimates of the standardized prediction equation for the top 50% of each job 

sample. The results of the Spearman rank-order correlation are shown in Table 14. The 

classifications in different combinations of selection methods and job samples are 

summarized in Table 15. 

5.4.1 Factor Determinacv 

Determinacies for the hierarchical factor model are shown in Table 11. In the 

Army Project A data, the determinacies for Gf, Gc, Gv/Mech, Speed, Math, and 

Psymotor are 0.927, 0.900, 0.865, 0.840, 0.776, and 0.634, respectively. In the Marine 

Corps JPM Automotive Mechanic data, the determinacies for Gf, Gc, Gv/Mech, Speed, 

Math, and Psymotor are 0.935, 0.887, 0.858, 0.853. 0.747, and 0.883, respectively. In the 

Marine Corps JPM Helicopter Mechanic data, the determinacies for Gf, Gc, Gv/Mech, 

Speed, Math, and Psymotor are 0.946, 0.902, 0.861, 0.859, 0.742, and 0.916, 

respectively. 

In summary, the determinacy for Gf is quite robust but the determinacy for Math 

drops below 0.8 among the Army Project A and the Marine Corps JPM. It is important to 

note that the determinacy for Psymotor is only 0.634 in the Army Project A while the 

determinacy for Psymotor is much higher in the Marine Corps JPM. The results show 

that the ECAT subtests tend to give a more accurate measure of Psymotor than the Army 

54 



Project A subtests, which do not capture Psymotor very well in terms of determinacy. In 

general, the instruments for measuring math knowledge do not perform as well as those 

for measuring other abilities. 

5.4.2 Standardized Regression Equation and the Adjusted R Square 

The job sample (N) and the top 50% of the job sample (Ns) are used for 

estimating the regression equations. Table 12 shows the standardized estimates for the 

prediction equation with the total job sample. In this table, the adjusted R2 column 

represents the adjusted value using the six factors as predictors across the 11 jobs. It is 

convenient to compare the predictive strength and the regression slopes across jobs with 

respect to the adjusted R value and the standardized regression equation. The 

hierarchical model shows that the Gf factor has a strong influence on criterion for all 11 

jobs. The Gc factor is important for Radio Operator, Medical, and Automotive 

Mechanic. The Gv/Mech factor has a significant effect on hands-on job performance for 

all jobs except Administrative. The Speed factor is only important for Radio Operator 

and Vehicle Mechanic. The Math factor and the Psymotor factor are significant for 

Military Police and Vehicle Mechanic, respectively. The results of the adjusted R2 show 

that Cannon Crewman has the lowest value. The highest value of R2 is about 0.57 for 

Automotive Mechanic. It is observed that the same structure of cognitive ability gives 

different strengths of prediction in different job performances. The Marine jobs show the 

highest predictive strength. 

The estimates of the standardized prediction equation for the top 50% of each job 

sample are shown in Table 13.   The selected sample was chosen from the top 50% of 
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ranking by gj. The results show that the Gf factor is not important for Cannon 

Crewman, Tank Crewman, Radio Operator, and Vehicle Mechanic in the selected sample. 

The Gc factor has a significant effect on Radio Operator, Motor Transport, and 

Automotive Mechanic. It is of interest to note that Gc is important for the top 50% of 

Motor Transport sample, but Gc is not an important predictor for the Motor Transport 

sample. The Speed factor is important for Vehicle Mechanic for the highest-ranked 

selectees. In these selected samples, the Gv/Mech factor becomes more important than 

the Gf factor for Cannon Crewman, Tank Crewman, Vehicle Mechanic, Motor Transport, 

and Automotive Mechanic. The significant effect on Gv/Mech is found in eight jobs. 

Math factor is significant for Military Police, but Psymotor factor has no significant 

effect on any of the jobs. None of the six factors are important for predicting the top 50% 

of Cannon Crewman, so the alternative method for g + s* is to use the Gf factor only. 

These estimated regression coefficients from the selected job samples are used for the 

following analyses (Spearman rank-order correlation and classification). 

5.4.3 The Spearman Rank-Order Correlation Coefficient 

The results of the Spearman rank-order correlations between the predicted 

criterion scores and the observed hands-on job performance are estimated by using the 

three methods defined above (see section 5.3). A higher value of the coefficient means 

the rank-ordered y (predicted criterion) based on a certain method is closer to the ranking 

by the observed hands-on job performance. As shown in Table 13, the method of using 

g + 5s performs better than the methods of using g + s* and g}.   Most of the rank 
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correlations between the observed criterion and the predicted criterion by g + s* are 

higher than those using only the general factor (gj) except for the jobs of Cannon 

Crewman, Radio Operator, and Medical. Two sets of the coefficients for g + s* and g} 

are nearly identical for each of these three jobs. Therefore, the general ability is an 

important indicator for predicting the hands-on performance in Cannon Crewman, Radio 

Operator, and Medical jobs. 

It is of interest to note that there is no significant factor found in the Cannon 

Crewman prediction (see Table 13). Thus, the comparison of g + s* and gj can be seen 

as the comparison of the Gf factor and the general factor for Cannon Crewman. The 

results indicate that for this jobs, the Gf factor is similar to the general factor in predicting 

the hands-on performance. The results of Cannon Crewman and Medical demonstrate 

that in practice, the situations with varied prediction strength (R2) are still in favor of the 

general ability as the predictor, so the difference among the three rank coefficients is tiny. 

The results for the two Marine jobs show another pattern: the specific factors 

enhance the precision of ranking individuals dramatically. This is to be expected given 

that the specific factors strengthen the prediction. We also note that the value of R2 is 

also high in Marine jobs. As the results of Monte Carlo study indicate that the high value 

of R tends to have high value of the Spearman rank-order correlation. 

5.4.4 Sensitivity. Specificity, and Proportion of Correct Decisions 

Table 15 displays the job classifications with respect to the sensitivity, specificity, 

and the proportion of correct decisions. When the value of R2 is taken into account, it is 
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observed that the cases with higher values of R2 perform consistently with the results 

from the simulation analyses. For example, in Automotive Mechanic with an R2 value of 

0.57, g + 5s performs better than g + s* and gj in terms of the values of sensitivity, 

specificity, and the proportion of correct decisions. The difference value is about 4.32%. 

It is important to note that the regression coefficients shown in Table 13 are from 

the top 50% of the job sample. For Cannon Crewman, the selection method of g 

represents the Gf factor without any specific factors because there is not any significant 

factor found in this regression. The classification of this job shows that general ability is 

the best predictor. It is also observed that including the predictors of the specific factors 

hamper the precision of classifications. The extreme results for Gannon Crewman show 

that g + 5s performs worst. Because of the lack of significant predictors and the low 

value of R square, the results for Cannon Crewman are regarded with suspicion. 

The comparison between g + 5s and g} shows that the general factor gives better 

predictive classification in Infantryman, Cannon Crewman, Tank Crewman, and Radio 

Operator. Results from the rest of the jobs shed light on the use of specific factors. It is 

expected that adding the significant factors to Gf will lead to a similar result obtained 

from the six factors, and perform better than the general ability does. No certain pattern 

is found in this real data application, so this assumption has not been validated. 

However, it is observed that the results of sensitivity, specificity, and proportion of 

correct decisions are almost identical for g + 5s and g + s* in Helicopter Mechanic and 

Automotive Mechanic jobs. 
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Although the R value for Vehicle Mechanic is only 0.16, the gain of sensitivity 

from g + 5s is about 3%. In practice, the increase of 3% is a remarkable improvement 

for the selection. Assume a selection setting with 10,000 applicants and 50% selection 

ratio. Here, an increase of 3% for sensitivity implies that about 150 additional successful 

subjects out of the 5,000 successful applicants would be accepted by the method of using 

specific factors in addition to the general factor. The other findings show that the 

classification of Tank Crewman and Radio Operator is best predicted by the general 

ability. These results imply that the specific skills is not required for Tank Crewman and 

Radio Operator. 

5.4.5 Profile Description 

A description of the profile for the top 100 individuals in the observed hands-on 

performance for each job is given in the appendix B. The variable TOP represents the 

rank-ordered hands-on performance; when the subject is in the top 100 rank-ordered 

category then TOP will be coded to 1, otherwise TOP will be assigned to 0. NEW, SIG, 

and GEN variables represent that the methods of g + 5s, g + s*, and gj are used for 

predicting hands-on performance, respectively. These three variables are sorted from 

highest to lowest and given rank-ordered values for each subject; then, each variable is 

classified into different groups (e.g., group 1 includes the rank-order values from 1 to 

100; group 2 ranging from 101 to 200; group 3 ranging from 301 to 400; group 4 ranging 

from 401 to 500; group 5 ranging from 501 to 600; group 6 ranging from 601 to 700). A 
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two-way table shows both the frequency and percentage crosstabs for two ordered 

variables (TOP by NEW, TOP by SIG, or TOP by GEN) for each job sample. 

Looking at the result for job 6 (Motor Transport), for example, the highest rank- 

order individuals (TOP = 1) are classified by three approaches: NEW (g + 5s), SIG 

(g + s ), and GEN (gj), separately. For the g + 5s method, 43 subjects are classified 

into group 1, 23 subjects are ranked in group 2, 16 subjects are in group 3, 12 subjects are 

in group 4, and 6 subjects are in group 5. For the g + s approach, 41 individuals are 

classified into group 1. Based on the classification of gj, there are 35 subjects in group 

1. If there are 100 vacancies in Motor Transport job sample, g + 5s and g + s will 

result in more accurate decisions than g}. Similarly, 5.7 subjects having low performance 

are selected by g + 5s, 59 low-performance subjects are predicted to be successful by 

g + s , and 65 subjects are misclassified as potential candidates by gj. It is observed 

that the selection method of using general and specific factors tends to accept more 

subjects who will be successful and tends to avoid the error of hiring subjects who will 

fail in future performance. 
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CHAPTER 6 

DISCUSSION 

6.1 Discussion of the Monte Carlo Study 

Results from the simulation study suggest that using specific factors in addition to 

a general factor as predictors gives better selection decisions. Because the true criterion 

is available for each applicant, the classification of applicants based on the true criterion 

and cutoff (selection ratio) is used for evaluating the success rate of the classifications on 

these two selection methods. 

It should be pointed out that these findings, as well as the findings of Hsu (1995), 

support the notion that sample size for selected subjects does not affect the prediction. 

The results of sensitivity indicate that the specific factors play an important role in the 

context of prediction and selection. It should also be noted that the percentage of 

sensitivity increase rate multiplied by the number of successful subjects gives information 

about the number of acquired successful subjects by the new selection approach. Figure 

19 shows how a 4% increase in the rate of sensitivity affects the decision of accepting 

successful applicants. When the sample size of applicants is 100,000 with a 50% 

selection ratio, 4% increase in the sensitivity will lead to an increase of accepting 2,000 

successful subjects. There are about 650,000 applicants taking the ASVAB for military 

enlistment every year. This means that a 4% of the increase in sensitivity with a 50% 

selection ratio will increase the correct selection of 13,000 successful subjects. The 

results of sensitivity also show that the most selective situation in terms of low selection 
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ratio (10%) results in about twice the increment in the sensitivity as compared to the high 

50% selection ratio. This implies that the method of using specific factors has potential 

contributions, especially in the setting with a large applicant sample. 

This report has examined the effects of R2, regression slopes, and factor 

determinacies in predictive accuracy in regard to identification of applicants' future 

performance. It is clear that the hierarchical model in;the condition of high R2, with more 

emphasis on the general factor and high determinacies for specific factors, results in more 

accurate identification of applicants than the other contrast models when the determinacy 

for the general factor is held constant. Another important finding is that the model with 

high R , high regression slope on specific factors, and high determinacies for specific 

factors leads to the greatest increase in value on sensitivity when compared to the single 

factor model. This finding is verified in the real data application which presents evidence 

for classification of Helicopter Mechanic and Automotive Mechanic jobs. 

6.2 Discussion of the Real Data Application 

There are some restrictions in the analyses of the real data application. First, the 

subtest scores are limited to part of the selected sample so the classification is not carried 

out in the non-selected sample, and the evaluating methods are carried out for the selected 

sample. Second, cross-validation is not carried out in real data analyses because of 

sample size. 

The results show that for the Army Project A data, the Gf, Gc, Gv/Mech, and 

Speed factor determinacies are quite high, which implies that the factor scores are 

62 



reliable. In the Marine Corps JPM data, the Math factor determinacy is about 0.75 but 

the rest of the factor scores are quite reliable. Based on the values of determinacies, we 

can conclude that the EC AT provides better measure for Psymotor; in contrast, Math 

ability is not well defined by the ASVAB, ECAT, and Army Project A subtests. These 

results suggest that more investigation and development of subtests for measuring Math 

ability are needed. ; 

Among Vehicle Mechanic, Motor Transport, Administrative, Helicopter 

Mechanic, and Automotive Mechanic jobs, the specific factors do increase the rank 

coefficient. The increment of Spearman rank order correlation coefficient implies that 

these jobs may require more specific abilities. For the prediction of Cannon Crewman, 

the general factor gives slightly better performance than does the Gf factor in addition to 

the Gv/Mech factor. In the case of Cannon Crewman, the results show that the six factors 

only explain 5% of the variance of the job performance. The regression gives a bad fit, so 

any conclusion about this job is limited. It is most likely that adding noncognitive 

predictors to the ability would improve the prediction of hands-on performance for 

Cannon Crewman. 

For Radio Operator, the regression equation shows that the Gf factor, the Gc 

factor, the Gv/Mech factor, and the Speed factor are important predictors. For the 

Medical job, the regression equation shows that three factors, the Gf factor, the Gc factor, 

and the Gv/Mech factor, are the most important predictors. The Spearman rank-order 

coefficients, however, show that there is not much difference among the three sets of 
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values in Radio Operator and Medical jobs.   It is observed that the additional specific 

factors do not enhance the predictive validity for these two jobs. 

Also, fluid and crystallized ability, as measured by intelligence or aptitude tests, 

play an important part in academic and occupational success. This fact demonstrates that 

these abilities are general and are not specific to the tests themselves. The hands-on 

performance of the Administrative job is better predicted by the fluid ability than by the 

general ability. This points to the advantage of using the hierarchical model for 

differentiating the structure of ability. The prediction equation of Vehicle Mechanic 

indicates that the Gv/Mech factor is more important than the Gf factor.    This fact 

validates that the scenario ßg   < ß s, created in the simulation, is close to the practical 

situation. 

For the Marine jobs, the Gv/Mech factor for Helicopter Mechanic and Automotive 

Mechanic and the Gc factor for Automotive Mechanic significantly improve the 

Spearman rank-order correlations. The differences of the rank correlations between 

g + 5s (or g + s ) and g, are about 0.1. The comparison between these two approaches 

with a 50% selection ratio shows that there is an increase of about 4% for sensitivity, 

specificity, and proportion of correct decisions. It is of interest to note that for 

Automotive Mechanic the standardized regression slope for the Gv/Mech factor (0.355) is 

close to that for the Gf factor (0.343), while the standardized regression slope for the Gc 

factor (0.135) is smaller than that for the Gf factor. For Helicopter Mechanic, the 

standardized regression equation shows that the regression slope for the Gf factor (0.404) 

64 



is much higher than those for the specific factors (e.g., 0.295 for Gv/Mech). These results 

provide evidence that specific factors have valuable contributions in selection and 

prediction. 

In summary, most results of the real data analyses agree with the results of the 

simulation study. The results suggest that the Army and the Marine Corps can improve 

the prediction of job performance by adding specific factor scores as predictors. - - 

6.3 Limitations, Implications, and Recommendations 

The results of the real data application point to the limitations of the Monte Carlo 

study. The values of R square are set at 0.4 and 0.6 in the Monte Carlo study. In' 

practice, the values of R square for Infantryman, Tank Crewman, and Vehicle Mechanic 

are below 0.2. For Cannon Crewman the R square is only 0.05. It would be useful to 

study models with much lower R square value than in the Monte Carlo study to examine 

the effects of selection methods. Furthermore, Short (1990) mentioned that the portion of 

items influenced by specific factors was found to be more influential in obtaining reliable 

factor scores than the number of items overall, so the number of subtests for each factor 

should be considered with respect to the issue of factor determinacy. The number of 

subtests for each specific factor is designed to be constant in the Monte Carlo study. 

Since unequal number of subtests for each specific factor could affect the reliability of 

factor score, it could be included in future studies. 

It is important to recognize that the scientific and practical utility of criterion 

validation depends as much on the measurement of the criterion as it does on the quality 
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of the measuring instrument itself. Thus, in many different types of training programs, 

much effort and expense goes into the development of a test for predicting who will 

benefit from the program in terms of subsequent job performance. In the area of special 

education or prevention programs, the use of factor scores will lead to more accurate 

identification and classification; for students regarding future performance. Because of 

the limited resources, how to determine which student receives treatment and which 

student is ineligible for treatment represents an important issue. For example, the 

traditional approaches to the identification of reading problems require comparison of 

standardized achievement and IQ measures. Factor scores can be applied to 

differentiating skill areas (e.g., general reading ability, spelling skill, and vocabulary 

skill). When evaluating these differences in the light of the theory of reading problems, 

the profiles of factor scores will lead to the prediction that individuals with less spelling 

skill tend to be the risk group for poor academic outcome. The use of specific factors can 

be applied to the specialized training program. For instance, the program for musical 

talents will admit subjects with musical aptitude (e.g., special talent in pitch, rhythm, or 

tone) rather than those with high academic achievement or IQ score. 

Predictive validity has been used in the fields of psychology and education mainly 

for analyzing the validity of certain types of tests and selection procedures. Many 

standardized intelligence tests, achievement tests, and ability tests were designed to 

provide information for the selection and placement of students and for comparing 

students, schools, and school districts with one another. Since many children have been 

misclassified by standardized tests and on this basis have been assigned to programs with 
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minimal content, low expectations, and restricted (rather than enriched) teaching 

approaches, the link between assessment and intervention becomes more important than 

the issues of placement and prediction. A new type of test should provide diagnostic 

information about students' preconceptions, learning strategies, and metacognitive and 

affective thought processes. The approach of using factor scores should contribute to 

effective diagnostic analysis. 1 '. 

The most difficult problem in social science studies is that the hypothetical 

concepts and constructs are not directly measurable. Although such concepts and 

constructs, or latent variables, cannot be directly measured, a number of variables can be 

used to measure various aspects of these latent variables more or less accurately. We 

may regard the observed variables as indicators of the latent variables. Each indicator has 

a relationship with the latent variable, but if we take one indicator alone to measure the 

latent variable, we would obtain a biased measurement. Using several indicators of each 

latent variable gives a better measurement of the latent variable. Another reason for using 

latent variables in behavioral and socioeconomic studies is that most of the measurements 

employed contain sizable errors of measurement, which, if not taken into account, can 

cause severe bias in the results. Errors of measurement arise because of imperfection in 

the various measurement instruments that are used to measure people's behavior, 

attitudes, feelings, and motivations. Even if we could construct valid measurement for 

these traits, it is usually impossible to obtain perfectly reliable variables. In practice, 

using factor scores instead of raw score or composite scores will be proper for profile 

analysis. 
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As an alternative to dollar value units, utility gains can be expressed as percentage 

increases in output. It is easy to realize that such output increases imply large dollar 

values, and there is a tendency to regard dollar estimates äs indicating greater utility than 

the percentage-increase estimates. It should be emphasized that the use of specific factor 

scores deserves special recognition as an improvement in selection and prediction. Given 

the findings, these; results suggest that the specific factor scores may facilitate the 

identification of students with reading disabilities and learning impairments in special 

populations. 

In the Army Project A data and the Marine Corps JPM data, each job has different 

hands-on job performance so the use of factor score can obtain unbiased estimates of 

regression slopes for each job. These equations can then be applied to the new enlistment 

cohort for selection and classification reference. Moreover, based on the different 

prediction equations, the different predicted hands-on performance for each of the 

different jobs could be computed for each individual. The information of predicted 

hands-on performance could be used for matching people to jobs. 

Previous research (Campbell, McHenry, & Wise, 1990) using the Army Project A 

data showed that some dimensions of job behavior, such as physical fitness and military 

bearing, are better predicted by noncognitive than cognitive predictors, and are better 

predicted by some noncognitive predictors than by others. Hogan (1991), Tett et al. 

(1991), and Schmit et al. (1995) suggested that some dimensions of job behavior can be 

predicted reliably by personality measures. Although the use of personality as a predictor 

in personnel selection has not been substantially successful in the past, Irving (1993) has 
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suggested that personality measures are related to performance criteria which are 

unrelated to cognitive ability when the traits measured are conceptually related to these 

criteria. It seems that personality measures may predict job performance dimensions 

which cannot be predicted by cognitive ability measures. The use of personality 

measures in personnel selection may be warranted when a careful job analysis is 

undertaken to determine which performance dimensions may be related to personality 

traits. 

As a final comment, the results of this report should be viewed with caution. 

Only a limited number of situations are included in the Monte Carlo study. Further 

research'using data on additional occupations' is necessary to corroborate the findings 

presented here. Despite its limitations, this report has shed some light on the nature of 

the relationship between aptitude tests and job performance and may stimulate additional 

research on an important topic in the area of prediction. In summary, the results indicate 

that the method of utilizing specific factor information studied in this research is valuable 

for personnel selection. 
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Table3 
Summary of Classification and Spearman Rank Correlation for g + 1 s 

* £ "*" I S 
Sensitivity Specificit) Correct Rank Correlation Sensitivity  Specificity 

 * 
Correct Rank Correlation 

N=250  R=0.5 

Model       1 68.75% 68.75% 68.75% 0.539 69.62% 69.62% 69.62% 0.565 2 70.20% 70.20% 70.20% 0.577 70.59% 70.59% 70.59%, 0.588 3 65.93% 65.93% 65.93% 0.462 68.47% 68.47% 68.47% 0.529 4 •68.13% 68.13% 68.13% 0.524 70.33% 70.33% 70.33% 0.578 5 '62.30% 62.30% 62.30% 0.364 66.56% 66.56% 66.56% 0.486 6 65.66% 65.66%, 65.66% 0.447 69.87% 69.87% 69.87% 0.566 7 73.64% 73.64% 73.64% 0.660 75.04% 75.04% 75.04% 0.690 8 75.61% 75.61% 75.61% 0.703 76.34% 76.34% 76.34% 0.720 9 69.93%) 69.93% 69.93%) 0.568 73.47% 73.47% 73.47% 0.653 10 73.04% 73.04% 73.04% 0.640 75.97% 75.97% 75.97% 0.708 11 64.73% 64.73% 64.73% 0.435 71.22% 71.22% 71.22% 0.599 12 •■68.87% 68.87% 68.87% 0.540 74.70% ' 74.70%> 74.70% 0.686 

N=250   R=0.1 
Model        1 35.45% 92.83% 87.09%, 0.535 36.99% 93.00% 87.40%) 0.558 2 38.52% 93.17% 87.70% 0.573 39.31% 93.26% 87.86% 0.583 3 30.94% 92.33% 86.19% 0.466 35.16% 92.80% 87.03%. 0.528 4 35.35% 92.82% 87.07% 0.525 38.48% 93.16% 87.70% 0.573 5 24.98% 91.66% 85.00% 0.360 32.52% 92.50% 86.50%. 0.486 6 29.69% 92.19% 85.94% 0.439 36.85% 92.98%) 87.37% 0.549 7 45.67% 93.96% 89.13%> 0.662 47.72% 94.19% 89.54% 0.692 8 48.41% 94.27% 89.68% 0.707 49.78% 94.42% 89.96% 0.720 9 38.18% 93.13% 87.64% 0.570 44.74% 93.86% 88.95%> 0.653 10 43.94% 93.77% 88.79% 0.645 49.22% 94.36% 89.84% 0.707 11 30.23% 92.25% 86.05% 0.443 40.70% 93.41% 88.14%> 0.600 12 36.17% 92.91% 87.23% 0.543 47.51% 94.17% 89.50% 0.688 

N=500  R=0.5 ' 
Model       1 68.60% 68.60% 68.60%> 0.535 69.56% 69.56% 69.56% 0.561 2 70.08% 70.08% 70.08% 0.573 70.60% 70.60% 70.60% 0.586 3 65.97% 65.97% 65.97% 0.461 68.52% 68.52%> 68.52% 0.528 4 68.44 % 68.44% 68.44% 0.527 70.56% 70.56% 70.56%, 0.579 5 62.53% 62.53% 62.53% 0.363 67.12% 67.12% 67.12% 0.493 6 65.18% 65.18% 65.18% 0.440 69.60%) 69.60% 69.60% 0.558 7 73.60% 73.60% 73.60% 0.659 75.12% 75.12%) 75.12% 0.694 8 75.91% 75.91% 75.91% 0.709 76.59% 76.59% 76.59% 0.725 9 70.28% 70.28% 70.28% 0.575 73.55% 73.55%, 73.55% 0.657 10 73.12% 73.12% 73.12% 0.645 76.02% 76.02% 76.02% 0.711 11 65.13% 65.13% 65.13% 0.446 71.48% 71.48% 71.48% 0.610 12 68.86% 68.86% 68.86% 0.542 75.13% 75.13% 75.13% 0.692 

N=500  R=0.1 
Model       1 35.68%> 92.85% 87.14% 0.538 37.70% 93.08% 87.54% 0.563 2 38.23%) 93.14% 87.65% 0.575 39.25% 93.25% 87.85% 0.586 3 31.54% 92.39% 86.31% 0.465 35.80% 92.87% 87.16% 0.532 4 35.00% 92.78% 87.00% 0.524 38.42% 93.16% 87.68% 0.574 5 25.52% 91.72% 85.10% 0.362 33.25% 92.58% 86.65% 0.491 6 30.03% 92.23% 86.01% 0.443 37.23% 93.03% 87.45% 0.555 7 45.23% 93.91% 89.05% 0.663 47.78% 94.20% 89.56% 0.695 8 48.52% 94.28% 89.70%, 0.707 49.72% 94.41% 89.94% 0.722 9 37.95% 93.11% 87.59% 0.571 44.23% 93.80% 88.85% 0.655 10 44.01% 93.78% 88.80%) 0.648 49.21% 94.36% 89.84% 0.711 

11 29.86% 92.21% 85.97% 0.443 40.54% 93.39% 88.11% 0.605 12 

.Vote     N 

35.99% 92.89% 87.20% 0.541 47.57% 94.17% 89.5 i% 0.690 

R represents selection ratio. 
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Table 
Summary of Classification and Spearman Rank Correlation for g + 1 

Difference ( gain from X * Is ) 
Sensitivity Specificity   Correct Rank Correlation 

N=250  R=0.5 
Model       1 0.87% 0.87% 0.87% 0.026 

2 0.39% 0.39% 0.39% 0.012 
3 2.54% 2.54% 2.54% 0.067 
4 2.20% 2.20% 2.20% 0.054 
5 4.26% 4.26% 4.26% 0.122 
6 4.21% 4.21% 4.21% 0.119 
7 1.41% 1.41% 1.41% 0.031 
8 0.73% 0.73% 0.73% 0.017 
9 3.54% 3.54% 3.54% 0.085 
10 2.92% 2.92% 2.92% 0.068 
11 6.48% 6.48% 6.48% Q.164 
12 5.84% 5.84% 5.84% 0.147 

N'=250   R=0.1 
Model       1 1.54% 0.17% 0.31% 0.022 

2 0.79% 0.09% 0.16% 0.010 
3 4.22% 0.47% 0.84% 0.062 
4 3.14% 0.35% 0.63% 0.048 
5 7.55% 0.84% 1.51% 0.126 
6 7.16% 0.80% 1.43% 0.II1 
7 2.05% 0.23% 0.41% 0.030 
8 1.36% 0.15% 0.27% 0.013 
9 6.56% 0.73% 1.31% 0.083 
10 5.28% 0.59% 1.06% 0.062 
11 10.47% 1.16% 2.09% 0.157 
12 11.34% 1.26% 2.27% 0.145 

N=500  R=0.5 
Model       1 0.96% 0.96% 0.96% 0.027 

2 0.52% 0.52% 0.52% 0.013 
3 2.55% 2.55% 2.55% 0.067 
4 2.13% 2.13% 2.13% 0.052 
5 4.60% 4.60% 4.60% 0.130 
6 4.42% 4.42% 4.42% 0.118 
7 1.51% 1.51% 1.51% 0.035 
8 0.68% 0.68% 0.68% 0.016 
9 3.27% 3.27% 3.27% 0.082 
10 2.90% 2.90% 2.90% 0.066 
11 6.35% 6.35% 6.35% 0.163 
12 6.27% 6.27% 6.27% 0.150 

N'=500  R=0.1 
Model       1 2.02% 0.22% 0.40% 0.025 

2 1.02% 0.11% 0.20% 0.011 
3 4.26% 0.47% 0.85% 0.067 
4 3.42% 0.38% 0.68% 0.050 
5 7.74% 0.86% 1.55% 0.129 
6 7.20% 0.80% 1.44% 0.113 
7 2.55% 0.28% 0.51% 0.032 
8 1.20% 0.13% 0.24% 0.015 
9 6.28% 0.70% 1.26% 0.085 
10 5.20% 0.58% 1.04% 0.064 
11 10.67% 1.19% 2.13% 0.162 
12 11.58% 1.29% 2.32% 0.149 
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Table 4 
Summary of Classification and Spearman Rank Correlation for g + 2s 

 s_ 
Sensitivity   Specificity     Con-ect    Rank Condition 

N=250  R=0.5 
Model       1 69.13%       69.13°, »       69.13% 0.548 

2 70.10%       70.10°/ 70.10% 0.570 
3 65.65%       65.65"/ 65.65% 0.452 
4 66.72%       66.72% 66.72% 0.490 
5 64.61%       64.61% 64.61% 0.426 
6 66.25%       66.25% 66.25% 0.471 

r 
7 7438%        74.38% 74.38% 0.674 
8 74.94%        74.94% 74.94% 0.694 
9 68.48%       68.48% 68.48% 0.532 
10 71.23%       71.23% 71.23% 0.605 
11 68.56%       68.56% 68.56% 0.526 r 12 70.31%        70.31% 70.31% 0.576 

N=250  R=0.1 
Model       1 36.90%       92.99% 87.38% 0.548 

I 38.05%       93.12% 87.61% 0.568 3 50.87%       92.32% 86.17% 0.454 4 55.38%       92.60% 86.68% 0.492 5 -9.27%       92.14% 85.85% 0.429 6 31.50%       92.39% 86.30% 0.472 7 45.63%       95.96% 89.13% 0.676 8 
9 

47.88%       94.21% 
37.33%       93.04% 

89.58% 
87.47% 

0.702 
0.559 10 40.57%       93.40% 88.11% 0.604 11 55.52%       92.84% 87.10% 0.526 

12 58.70%       93.19% 87.74% 0.580 

N=500 R=0.5 
' 

Model 1 69.08%       69.08% 69.08% 0.546 2 70.07%        70.07% 70.07% 0.567 3 65.36%       65.36% 65.36% 0.452 4 66.82%       66.82% 66.82% 0.488 5 64.72%       64.72% 64.72% 0.429 6 66.05%       66.05% 66.05% 0.467 7 74.43%       74.43% 74.43% 0.677 8 75.44%        75.44% 75.44% 0.701 
9 69.63%       69.63% 69.63% 0.560 10 71.43%       71.43% 71.43% 0.606 11 68.24%       68.24% 68.24% 0.524 

12 70.49%       70.49% 70.49% 0.575 

N=500 R=0.1 
Model 1 56.72%       92.97% 87.34% 0.549 2 58.11%       93.12% 87.62% 0.568 3 

4 
30.69%       92.30% 
32.98%       92.55% 

86.14% 
86.60% 

0.454 
0.487 5 29.17%       92.13% 85.83% 0.425 6 51.49%       92.39% 86.30% 0.471 7 46.20%       94.02% 89.24% 0.675 8 48.44%       94.27% 89.69% 0.701 9 37.58%       93.06% 87.52% 0.562 10 40.38%       93.38% 88.08% 0.605 11 35.47%       92.83% 87.09% 0.525 12 38.70%       93.19% 87.74% 0.577 

Sensitivity   Specificity     Correct    Rank Correlation 

A/ore     X represents selected sample 5 

R represents selection ratio. 

69.40% 69.40% 69.40% 0.556 
70.83% 70.83% 70.83% 0.591 
66.57% 66.57% 66.57% 0.475 
68.64% 68.64% 68.64% 0.536 
65.56% 65.56% 65.56% 0.453 
68.27% 68.27% 68.27% 0.522 
74.68% 74.68% 74.68% 0.684 
76.08% 76.08% 76.08% 0.718 
70.56% 70.56% 70.56% 0.564 
73.50% 73.50% 73.50% 0.661 
69.72% 69.72% 69.72% 0.561 
72.90% 72.90% 72.90% 0.641 

37.56% 93.06% 87.51% 0.553 
39.34% 93.26% 87.87% 0.583 
32.09% 92.45% 86.42% 0.473 
36.26% 92.92% 87.25% 0.536 
30.96% 92.33% 86.19% 0.454 
34.46% °2 72% 86.89% 0.520 
46.79% ■ .>■•% 89.36% 0.685 
50.39% 94.49% 90.08% 0.725 
39.71% 93.30% 87.94% 0.591 
45.10% 93.90% 89.02% 0.664 
38.13% 93.13% 87.63% 0.564 
43.83% 93.76% 88.77% 0.647 

69.42% 69.42% 69.42% 0.557 
70.81% 70.81% 70.81% 0.586 
66.44% 66.44% 66.44% 0.479 
68.61% 68.61% 68.61% 0.538 
65.99% 65.99% 65.99% 0.462 
67.86% 67.86% 67.86% 0.521 
75.03% 75.03% 75.03% 0.689 
76.79% 76.79% 76.79% 0.727 
70.76% 70.76% 70.76% 0.592 
74.04% 74.04% 74.04% 0.666 
69.85% 69.85% 69.85% 0.565 
73.23% 73.23% 73.23% 0.645 

37.27% 93.03% 87.45% 0.557 
39.57% 93.29% 87.91% 0.586 
32.30% 92.48% 86.46% 0.479 
36.32% 92.92% 87.26% 0.536 
31.24% 92.36% 86.25% 0.458 
35.39% 92.82% 87.08% 0.526 
47.12% 94.12% 89.42% 0.686 
50.68% 94.52% 90.14% 0.727 
39.96% 93.33% 87.99% 0.596 
45.38% 93.93% 89.08% 0.667 
38.37% 93.15% 87.67% 0.568 
44.12% 93.79% 88.82% 0.650 
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Table 4 
Summary of Classification and Spearman Rank Correlate :on for g + 2 s 

 . Difference ( gain from g f 2 .t ^ 

Sensitivity Specificity     Correct     Rank Correlatio 

N=250  R=0.5 
Model       1 0.27% 0.27% 0.27% 0.007 2 0.73% 0.73% 0.73% 0.020 3 0.92% 0.92% 0.92% 0.023 4 1.93% 1.93% 1.93% 0.046 5 0.94% 0.94% 0.94% 0.027 6 2.02% 2.02% 2.02% 0.052 7 0.29% 0.29% 0.29% 0.010 8 1.14% 1.14% 1.14% 0.024 9 2.08% 2.08% 2.08% 0.032 10 2.27% 2.27% 2.27% 0.056 11 1.16% 1.16% 1.16% 0.035 

12 2.58% 2.58% 2.58% 0.065 

N=250  R=0.1 
Model       1 0.66% 0.07% 0.13% 0.005 2 1.29% 0.14% 0.26% 0.015 3 1.22% 0.14% 0.24% 0.020 4 2.88% 0.32% 0.58% 0.044 5 1.69% 0.19% 0.34% 0.025 6 2.95% 0.33% 0.59% 0.048 7 1.16% 0.13% 0.23% 0.010 8 2.50% 0.28% 0.50% 0.024 9 2.38% 0.26% 0.48% 0.032 10 4.53% 0.50% 0.91% 0.059 11 2.61% 0.29% 0.52% 0.037 12 5.13% 0.57% 1.03% 0.067 

N=500  R=0.5 
Model       1 0.34% 0.34% 0.34% 0.010 2 0.74% 0.74% 0.74% 0.019 3 1.09% 1.09% 1.09% 0.027 4 1.80% 1.80% 1.80% 0.050 5 1.27% 1.27% 1.27% 0.032 6 1.81% 1.81% 1.81% 0.054 7 0.60% 0.60% 0.60% 0.012 8 1.35% 1.35% 1.35% 0.026 9 1.13% 1.13% 1.13% 0.031 10 2.62% 2.62% 2.62% 0.061 11 1.61% 1.61% 1.61% 0.041 

12 2.75% 2.75% 2.75% 0.070 

N=500  R=0.1 
Model       1 0.56% 0.06% 0.11% 0.008 

2 1.46% 0.16% 0.29% 0.019 3 1.60% 0.18% 0.32% 0.025 4 3.33% 0.37% 0.67% 0.049 5 2.07% 0.23% 0.41% 0.033 6 3.90% 0.43% 0.78% 0.055 7 0.92% 0.10% 0.18% 0.011 
8 2.24% 0.25% 0.45% 0.025 9 2.39% 0.27% 0.48% 0.034 10 5.00% 0.55% 1.00% 0.062 11 2.90% 0.32% 0.58% 0.043 

12 5.43% 0.60% 1.09% 0.072 
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Table 5 
Summary of Classification and Spearman Rank Correlation for g + 3 s 

Sensitivity  Specificity     Correct    Rank Correlator.       Sensitivity-Specificity 
g+3* 

Correct    Rank Correlation 

N=250  R=0.5 

Model       1 69.09% 69.09% 69.09% 0.547 
2 69.72% 69.72% 69.72% 0.564 
3 65.73% 65.73% 65.73% 0.458 
4 66.73% 66.73% 66.73% 0.479 
5 64.30% 64.30% 64.30% 0.412 
6 64.64% 64.64% 64.64% 0.423 
7 74.22% 74.22% 74.22% 0.670 
8 75.02% 75.02% 75.02% 0.696 
9 69.76% 69.76% 69.76% 0.563 
10 70.59% 70.59% 70.59% 0.580 
11 67.20% 67.20% 67.20% 0.503, 
12 68.17% 68.17% 68.17% 0.519 

N=250   R=0. 1 
Model        1 36.42% 92.94% 87.28% 0.544 

2 37.76% 93.08% 87.55% 0.566 
3 30.81% 92.31% 86.16% 0.455 
4 31.74% 92.42% 86.35% 0.469 
5 28.27% 92.03% 85.65% 0.411 
6 28.64% 92.07% 85.73% 0.423 
7 45.72% 93.97% 89.14% 0.674 
8 48.14% 94.24% 89.63% 0.700 
9 37.40% 93.04% 87.48% 0.562 
10 38.74% 93.19% 87.75% 0.578 
11 33.94% 92.66% 86.79% 0.503 
12 34.47% 92.72% 86.89% 0.521 

N=500  R=0.5 
Model       1 69.09% 69.09% 69.09% 0.545 

2 69.92% 69.92% 69.92% 0.566 
3 65.68% 65.68% 65.68% 0.453 
4 66.02% 66.02% 66.02% 0.469 
5 64.15% 64.15% 64.15% 0.411 
6 64.50% 64.50% 64.50% 0.426 
7 74.26% 74.26% 74.26% 0.672 
8 75.60% 75.60% 75.60% 0.700 
9 69.66% 69.66% 69.66% 0.557 
10 70.37% 70.37% 70.37% 0.582 
11 67.49% 67.49% 67.49% 0.504 
12 68.20% 68.20% 68.20% 0.521 

N=500   R=0.1 
Model       1 36.35% 92.93% 87.27% 0.546 

2 38.24% 93.14% 87.65% 0.566 
3 30.75% 92.31% 86.15% 0.456 
4 31.49% 92.39% 86.30% 0.470 
5 28.20% 92.02% 85.64% 0.410 
6 29.02% 92.11% 85.80% 0.423 
7 45.74% 93.97% 89.15% 0.675 
8 48.30% 94.26% 89.66% 0.701 
9 37.67% 93.07% 87.53% 0.561 
10 38.88% 93.21% 87.78% 0.580 
11 33.43% 92.60% 86.69% 0.503 
12 34.97% 92.77% 86.99% 0.520 

Vote     N represents selected sample s 

R represents selection ratio. 

69.31% 69.31% 69.31% 0.556 
70.32% 70.32% 70.32% 0.582 
67.36% 67.36% 67.36% 0.501 
69.68% 69.68% 69.68% 0.554 
66.35% 66.35% 66.35% 0.479 
68.44% 68.44% 68.44% 0.529 
74.66% 74.66% 74.66% 0.683 
76.16% 76.16% 76.16% 0.718 
71.68% 71.68% 71.68% 0.617 
74.29% 74.29% 74.29% 0.673 
70.67% 70.67% 70.67% 0.593 
73.29% 73.29% 73.29% 0.650 

36.98% 93.00% 87.40% 0.546 
38.68% 93.19% 87.74% 0.576 
33.15% 92.57% 86.63% 0.489 
36.09% 92.90% 87.22% 0.534 
32.02% 92.45% 86.40% 0.472 
34.69%, 92.74% 86.94% 0.520 
46.57% 94.06% 89.31% 0.682 
49.77% 94.42% 89.95% 0.718 
41.44% 93.49% 88.29% 0.614 
45.68% 93.96% 89.14% 0.668 
39.72% 93.30% 87.94% 0.587 
44.01% 93.78% 88.80% 0.646 

69.63% 69.63% 69.63% 0.556 
70.56% 70.56% 70.56% 0.584 
67.40% 67.40% 67.40% 0.500 
68.90% 68.90% 68.90% 0.544 
66.74% 66.74% 66.74% 0.483 
68.54% 68.54% 68.54% 0.532 
74.88% 74.88% 74.88% 0.684 
76.56% 76.56% 76.56% 0.721 
71.88% 71.88% 71.88% 0.615 
74.21% 74.21% 74.21% 0.675 
71.10% 71.10% 71.10% 0.596 
73.52% 73.52% 73.52% 0.653 

37.05% 93.01% 87.41% 0.553 
39.43% 93.27% 87.89% 0.581 
33.26% 92.58% 86.65% 0.497 
36.28% 92.92% 87.26% 0.542 
32.63% 92.51% 86.53% 0.480 
35.21% 92.80% 87.04% 0.526 
46.91% 94.10% 89.38% 0.686 
50.15% 94.46% 90.03% 0.721 
41.77% 93.53% 88.35% 0.617 
46.02% 94.00% 89.20% 0.672 
39.77% 93.31% 87.95% 0.593 
44.39% 93.82% 88.88% 0.651 
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Table 5 
Summary of Classification and Spearman Rank Correlation for g + 3 s 

Difference ( gain from g + 2s ) 

Sensitivity Specificity Correct Rank Correlation 

N=250 R=0.5 

Model 1 0.22% 0.22% 0.22% 0.009 
2 0.60% 0.60% 0.60% 0.017 
3 1.63% 1.63% 1.63% 0.043 
4 2.94% 2.94% 2.94% 0.075 
5 2.05% 2.05% 2.05% 0.067 
6 3.80% 3.80% 3.80% 0.106 
7 0.44% 0.44% 0.44% 0.012 
8 1.14% 1.14% 1.14% 0.022 
9 1.92% 1.92% 1.92% 0.053 
10 3.70% 3.70% 3.70% 0.093 
11 3.47% 3.47% 3.47% 0.090 
12 5.12% 5.12%' 5.12% 0.131 

N=250 R=0.1 
Model 1 0.56% 0.06% 0.11% 0.002 

2 0.92% 0.10% 0.18% 0.010 
3 2.34% 0.26% 0.47% 0.034 
4 4.34% 0.48% 0.87% 0.065 
5 3.75% 0.42% 0.75% 0.061 
6 6.05% 0.67% 1.21% 0.097 
7 0.85% 0.09% 0.17% 0.009 
8 1.64% 0.18% 0.33% 0.018 
9 4.04% 0.45% 0.81% 0.052 
10 6.94% 0.77% 1.39% 0.090 
11 5.78% 0.64% 1.16% 0.084 
12 9.54% 1.06% 1.91% 0.125 

N=500 R=0.5 
Model 1 0.55% 0.55% 0.55% 0.011 

2 0.64% 0.64% 0.64% 0.017 
3 1.71% 1.71% 1.71% 0.047 
4 2.88% 2.88% 2.88% 0.076 
5 2.59% 2.59% 2.59% 0.072 
6 4.04% 4.04% 4.04% 0.106 
7 0.62% 0.62% 0.62% 0.012 
8 0.96% 0.96% 0.96% 0.021 
9 2.22% 2.22% 2.22% 0.058 
10 3.84% 3.84% 3.84% 0.092 
11 3.61% 3.61% 3.61% 0.091 
12 5.32% 5.32% 5.32% 0.132 

N=500 R=0.1 
Model 1 0.70% 0.08% 0.14% 0.007 

2 1.20% 0.13% 0.24% 0.014 
3 2.51% 0.28% 0.50% 0.041 
4 4.79% 0.53% 0.96% 0.072 
5 4.43% 0.49% 0.89% 0.070 
6 6.18% 0.69% 1.24% 0.103 
7 1.16% 0.13% 0.23% 0.011 
8 1.85% 0.21% 0.37% 0.020 
9 4.10% 0.46% 0.82% 0.056 
10 7.14% 0.79% 1.43% 0.092 
11 6.34% 0.70% 1.27% 0.090 
12 9.42% 1.05% 1.88% 0.131 
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Table 6 
Summary of Cross- Validation for g + 1 s 

5     o°S     ?o"S       S     o^     £5        oX     -     -        -     0.9.7     .0.017 
3 0.403        0 305        0 098 03 ^ °™       ™       *«» 0.889       0.894        -0.005 
4 0,37       „338        0099 04I6       0 336        °™ ^ "^ 0,27       0.969        -0.042 
j        0403 o::3 o>8o olo 0°883 °923 *«o 0,94 0.929 ^ 
6            0+59 ";9> «179 0456 0 275 0   8,               o -°065 °'965 103° "0-065 
I            °5]8 °^2 «056 0 50 4 nl n~ "°'°86 °902 °-980 -*™ 
8 °526 "49< "031 0 523 0 490 0 033 o«n ^ "°°22 °M2 <»■«« "0023 9 °522 °"3 0,49 05 6° I 0°2 n°^ -00>3 0.6,5 0.630 -0.015 

0 565 0 437 0,29 o.551 0433 0 1 062 nl, "° ^ °'675 °732 *°» 
0 5,7 0 274 „243 0.515 0 2 ow 0 7 nl "°'°57 °635 °'686 -°05' 

■2           0 578 0 347 0 232 0.58, 0 352 .£ o£ o   52 1iZ °™ ^ *094 

N=250R=0 1 752 -°107 °-638 0.746 -0.108 
Model      1 0286 26        0 060 0.285" 0221        0.064 0.918        0.933 

0 28, 0 250        0 03, 0.269 0£ •°°15 0901        09>8        "0017 
3 0 34O 0,92        0,48 0 346 0-00 0,2 «™ ?5 * ° 895       0.900        -0.005 
4 °34' ''»»        ""3 0.3« 2 4 oa o^ -004' °929       0974        -0045 
>             0 36, o,44        „;,7 0.374 0   32 0   4 c ' "° °35 ° 888        0.928         "0.040 
6 ■       °412 !i"78        «:34 0417 0,76 „™ °''* ' °2° -° °65 0.952       1.019        -0 067 7 0*0 ,.,„        ,,„„, 03

7 7 io
24' 0.9, 0.989 -0,079 0.904       0.98!        -0 077 

8 0 40, ,3,7        ll(m 
9; 02 0 097 0.642 0.667 -0.025 0.638       0.663 -0 025 

9 0467 o;73         0,94 „.4 2 " 0£ 0   70 0 ^ ■°°'2 °6"         °623 ^ 
10 048S «™ .'180 0 468 0 300 0?68 n«?o "° °62 °674 ° 734 -0-060 
'• 0J89 ■"»» «29. 0.48 0 3 o ' osoo "°055 °'617 °669 -0052 
12           °545 'i;5°        "295 0.53. 0   36 0   95 06 4 nZ "° ^ ° 7°5       °805 -°.100 

KM00R-0.S °'634 °739 -0105 0.««       0748 -0.102 
Model      ] 0403 i,j« ,-, rt^c 

2 0399 „£ :0° 9
9: ^ 0048 0.899 0 906 ,007 0 905       0.923 -00,8 

3 0398 '-« 0 1.5 0  99 " ?n °" °894 -00,° 0-884 0.892 -0.00 
4 0429. 0343 0086 0.4 31 '    ' S«l *°" °m °™ ^ 
5 0412' 0 220 0.93 0.418 0^22 0^96 0 9 0 ?™ ^ °'883 °'922 -°039 

6 0459 0274 0186 0 455 0 776 °^ '024 "° °74 °944 '018 -0075 
7 05,6 0444 0072 0.5. ll 7 !! °™ "° °79 «.905 0.98. -0.076 
8 0.532 0 498 0 033 0 537 0 508 0 029 ntll 8 "°°29 °639 0669 "0030 
9 0.520 0 377 0.143 0 527 0 380 0 U8 oT, ° ™ -°°i4 °605 0-6'8 -0-013 
10 0 565 0 445 0 121 0 62 ! « °™ °?31 "° °59 0.665 0.727 -0.06 
1. 0 528 0:92 0 236 0 524 Ö 5 0° n°"6 "^ °« 0.622 0.678 -0.055 
I- 0 597 03,7 0 240 0 59, ö«i 0^ «™ °802 '°097 O™1 0.799 -0.097 

N=500R=0.1 -40 °633 °743 -0110 0.636 0.747 -0,„ 

2 °284 0249 00I "83 l:f2 °0™ S °9'4 -°018 °897 0.9.9 .0.02. 
3 0 354 0 204 0,50 0.3« 02" 0^54 0.923 "« "" ^ °8?9 °885 ^ 

-"°        "uy/ 0412       n ;ri7        nine            ^ ^,„                            ^.^i U.^öö -U.UBI 
8            0 408        „356        0 052 0 40               5        „                  „<           ° ^ "° °25 °-633 »-«I "0-028 
»            0.463        „263        0 200 0 45         0'            0                  nÄ]          ° ^ -°°14 °610 °.623 -0.013 

-  •- - :s ;s s           ™ - as JS JS 
•Vo«.   N «presents selected sample size.  " lli 

R represents selection ratio 
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Table 7 
Summary- of Cross-Validation for g + 2 s 

Spearman Rank Correlation 

N=250 R=0.5 
Model 1 

2 

3 
4 

5 

6 

7 

8 

9 

10 

11 

12 

N=250   R=0.1 

Model       1 
T 

3 
4 

6 
7 

8 
9 

10 

11 

N=500 

Model 

N=500 

Model 

R=0.5 
1 
2 

3 
4 

5 
6 
7 

8 
9 

10 

11 

12 

R=0.1 
1 

6 
7 

8 

9 

10 

11 

12 

-2s 
Sample 1 

PRESS 

0354 

0403 

0.311 

0.379 

0.300 

0.377 

0.477 

0.533 

0.421 

0.503 

0.383 

0.485 

0.235 
0.294 

0.245 

0.321 
0 248 

0.325 
0.356 
0.421 

0.342 
0425 

0331 

0.427 

0.371 

0.401 

0.328 
0.394 : 

0.313 
0.388 
0.488 
0.543 

0.422 
0.507 

0.405 

0495 

0265 

0.303 
0.253 
0.327 

0.267 

0.335 

0.359 
0.434 

0.348 

0.441 

0.333 

0.446 

Difference 
Sample Z 

-2s Difference      g + 2s 
Sample 1 Sample 2 

Difference     g +2s        g 

0 352 

0.377 

0 290 

0.315 

0254 

0 297 

0.468 

0492 
0397 

0.409 
0341 

0.368 

0238 

0 257 

0 179 

0 212 
0 181 

0 205 
0.333 

0352 
0 256 

0 268 

0 243 

0 272 

0.355 
0 374 

0287 
0.304 
0.264 

0298 
0.467 

0.490 

0.370 

0 402 

0 339 

0 373 

0241 

0 253 
0 195 

0210 
0 189 

0 204 

0 325 

0 352 

0.252 

0 285 

0 231 

0 261 

0 002 

0.026 

0.021 

0 064 

0 045 

0.080 

0.009 

0040 

0.024 

0.093 

0042 

0.118 

-0.003 

0 036 

0066 
0.110 

0 068 

0 120 
0.023 
0.070 
0 086 

0 158 

0088 

0.155 

0.016 

0.028 
0041 

0.089 

0.048 
0.091 
0.021 

0.053 

0.053 
0.105 

0.066 

0 122 

0.024 

0049 
0.058 

0116 

0 078 
0.131 
0034 

0.082 

0.096 

0.156 

0 103 

0.185 

0.352 

0.390 

0.314 

0.375 

0.292 

0.370 

0.477 

0.531 

0.389 

0.497 

0.381 

0.483 

0.246 

0.304 

0256 

0.310 

0 222 
0.311 

0.353 
0.415 

0.339 
0.421 

0.326 

0.425 

0.369 

0.402 

0.330 
0.390 
0.318 
0.390 
0.494 

0.545 
0.415 

0 507 

0405 

0.494 

0.266 

0.309 
0259 

0.320 
0 259 

0 327 

0.363 

0 421 

0.343 

0.443 

0332 

1445 

0.354 

0.359 
0.281 

0.308 

0265 

0.290 
0.461 

0.489 

0.384 

0.403 

0.331 

0.379 

0.239 

0.257 
0.194 

0.200 
0 148 

0.193 
0.329 

0.342 
0.239 
0.264 

0.230 

0.259 

0.352 

0370 

0,289 
0.308 

0.278 
0.300 
0.474 

0.496 

0 365 

0 399 

0.338 

0369 

0.243 

0 252 
0.198 
0.211 

0 177 

0.208 

0326 

0.347 

0.243 

0.277 

0.212 

0.265 

-0.002 

0.031 

0.033 
0.067 

0.027 

0.080 

0.016 

0.042 

0.005 

0.094 

0.051 

0.104 

0.007 

0.047 

0.062 
0.110 
0.074 

0.118 
0.024 

0.073 
0 100 

0.158 

0.097 

0.166 

0.017 

0.032 
0.041 

0.082 
0.041 

0.090 

0.020 

0.049 
0.050 

0.108 

0.067 

0.125 

0.023 
0.058 
0.061 

0.109 

0.082 

0.118 
0.037 

0.075 

0.099 

0.166 

0 120 

0.180 

0.683 

0.655 

0.705 

0.672 

0.836 

0.797 

0.485 

0.455 

0.512 

0.491 

0.632 

0.581 

0.687 

0.663 

0.702 

0.676 

0.833 
0.789 
0.482 

0.453 
0.515 

0.482 

0.623 

0.577 

Note     N represents selected sample size. 

R represents selection ratio. 

0.669 
0.651 

0.693 
0.667 

0 828 
0.787 

0.479 

0.450 

0.525 

0.482 

0.623 
0571 

0.681 

0.662 

0.699 
0.666 
0.827 

0.789 
0.477 

0.449 

0.520 

0.477 

0.622 

0.568 

0.683 
0.661 

0.710 

0.689 

0.847 

0.822 

0.488 
0.468 

0.512 

0.519 

0.643 

0.623 

0.687 

0.669 

0.709 
0.697 

0.845 

0.815 
0.486 
0.467 

0.529 
0.515 

0.641 

0.616 

0 672 

0.660 

0.702 
0.691 
0.841 

0.815 
0.485 

0.467 

0.539 

0513 

0.642 

0.613 

0.685 
0.671 

0.707 

0.690 
0.842 

0.820 

0483 

0466 

0.537 

0.512 

0.643 

0614 

0.001 

-0.006 

-0.005 
-0.017 

-0.011 

-0.026 

-0.003 

-0.013 

0.000 

-0.027 

-0.011 

-0.042 

0.000 

-0 006 

-0.007 
-0.021 

-0.012 
-0.026 

-0.003 
-0.014 
-0.015 

-0.033 
-0.018 

-0.040 

-0.004 

-0.008 

-0.009 
-0.025 
-0.012 

-0.029 
-0.007 

-0.017 
-0.014 

-0.031 

-0.019 

-0 042 

-0.004 

-0.009 

-0.008 
-0.024 

-0.015 

-0.031 
-0.006 

-0.017 

-0.016 

-0.035 

-0.021 

-0.046 

0.677 

0.662 

0.701 

0.677 

0.835 

0.790 

0.480 

0.458 

0.536 

0.488 

0.634 

0.581 

0.679 

0.665 

0.698 
0.667 

0.843 
0.795 
0.480 

0.455 
0.521 

0.481 

0.628 

0.577 

0.672 

0.649 
0.692 

0.665 
0.827 

0.787 

0.479 
0.451 

0.517 

0.481 

0.619 

0.569 

0.671 

0.654 
0.694 

0.668 
0.821 

0.786 

0.478 

0.453 

0.514 

0.473 

0.621 

0.566 

0.678 

0.670 

0.709 

0.695 

0.843 

0.814 

0.484 

0.473 

0.535 

0.517 

0.648 

0.617 

0.679 

0.675 

0.708 
0.686 

0.853 
0.820 
0.483 
0.470 

0.536 

0.513 

0.648 

0.615 

0.677 

0.659 
0.701 

0.688 

0.839 
0.816 
0.485 

0.469 

0.530 

0.512 

0.638 

0.610 

0.675 
0.666 

0.703 
0.689 
0.836 

0.816 

0.485 

0.467 

0.530 

0.509 

0.645 

0.612 

Difference 

-0.001 

-0.007 

-0.008 

-0.018 

-0.008 

-0.024 

-0.003 

-0.014 

0.002 

-0.029 

-0.015 

-0.036 

0.000 

-0.010 

-0.010 
-0.020 

-0.010 
-0.025 
-0.004 

-0.015 
-0.016 

-0.032 

-0.020 

-0.039 

-0.004 

-0.010 

-0.010 
-0.023 

-0.012 
-0.029 
-0.006 
-0.017 

-0.012 

-0.032 

-0.019 

-0.042 

-0.004 

-0.012 
-0.010 

-0.021 

-0.015 
-0.029 

-0.007 

-0.014 

-0.016 

-0.036 

-0.024 

-0.045 
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Table 8 
Summary of Cross-Validation for g ■3s 

Spearman Rank Correlation PRESS 

Sample 1 Sample 2 Sample 1 Sample 2 
g+3s g Difference g +3J g Difference g+3s g   ■ Difference g+3s g Difference 

N=250   R=0.5 
Model        1 0.352 0.359 -0.007 0.364 0.372 -0.008 0.969 0.966 0.003 0.959 0.953 0.006 

2 0.388 0.379 0.009 0.382 0.365 0.017 0.940 0.942 -0.002 0.943 0.949 -0.006 
3 0.342 0.285 0.057 0.339 0.294 0.045 1.045 1.068 -0.023 1.047 1.065 -0.019 
4 0.415 0.307 0.108 0.399 0.305 0.094 1.017 1.062 -0.045 1.013 1.054 -0.041 
5 0.331 0.241 0.091 0.343 0.246 0.097 1.058 1.086 -0.028 1.054 1.092 -0.038 
6 0.407 0.275 0.133 0.406 0.260 0.145 1.020 1.075 -0.056 1.019 1.081 -0.062 
7 0.474 0.463 0.011 0.465 0.461 0.004 0.684 0.688 -0.004 0.696 0.697 0.000 

\               8 0.528 0.496 0.032 0.519 0.492 0.027 0.652 0.666 -0.014 0.656 0.667 -0.011 
9 0.451 0.381 0.071 0.430 0.350 0.080 0.772 0.797 -0.025 0.766 0.793 -0.028 
10 0.528 0.380 0.148 0.533 0.387 0.146 0.713 0.781 -0.067 0.720 0.791 -0.071 
11 0.470 0.328 0.143 0.459 0.332 0.127 0.786 0.845 -0.059 0.784 0.837 -0.052 
12 0.519 0.340 0.179 0.523 0.308 0.214 0.744 0.828 -0.084 0.747 0.842 -0.095 

N=250   R=0.1 
Model       1 0.232 0.239 -0.007 0.241 0.243 -0.002 0.972 0.968 0.005 0.977 0.974 0.004 

2 0.282 0.265 0.017 0.272 0.241 0.031 0.942 0.946 -0.004 0.955 0.961 -0.006 
3 0.268 0.185 0.083 0.263 0.178 0.085 1.048 1.067 -0.019 1.046 1.064 -0.018 
4 0.339 0.190 0.149 0.335 0.187 0.149 1.010 1.055 -0.044 1.002 1.046 -0.044 
5 0.300 0.170 0.130 0.296 0.162 0.134 1.061 1.095 -0.035 1.063 1.097 -0.033 
6 0.352 C 166 0.186 0.353 0.168 0.185 1.018 1.074 -0.056 1.019 1.074 -0.056 
7 0.339 0.329 0.010 0.333 0.315 0.018 0.687 0.689 -0.001 0.691 0.695 -0.003 
8 0.398 0.340 0.058 0.395 0.339 0.056 0.652 0.666 -0.014 0.647 0.662 -0.015 
9 0.385 0.262 0.123 0.370 0.255 0.115 0.771 0.808 -0.036 0.766 0.801 -0.035 
10 0.486 0.269 0.218 0.455 0.251 0.203 0.712 0.786 -0.074 0.724 0.787 -0.063 
11 0.412 0.226 0.186 0.393 0.193 0.200 0.782 0.838 -0.056 0.782 0.834 -0.052 
12 0.497 0.228 0.268 0.487 0.222 0.264 0.743 0.837 -0.094 0.741 0.833 -0.092 

N=500   R=0.5 
Model       1 0.365 0.364 0.001 0.359 0.350 0.009 0.958 0.958 0.000 0.960 0.964 -0.004 

2 0.392 0.370 0.022 0.391 0.371 0.020 0.933 0.943 -0.010 0.940 0.948 -0.009 
3 0.350 ' 0.284 0.067 0.359 0.286 0.073 1.034 1.058 -0.024 1.031 1.060 -0.029 
4 0.413 0.295 0.118 0.401 0.287 0.114 0.999 1.052 -0.053 0.997 1.047 -0.050 
5 0.359 0.254 0.104 0.360 0.242 0.118 1.056 1.095 -0.039 1.049 1.091 -0.042 
6 0.419 0.264 0.155 0.423 0.263 0.160 1.008 1.075 -0.067 1.011 1.082 -0.071 
7 0.487 0.467 0.020 0.489 0.473 0.017 0.680 0.689 -0.009 0.679 0.686 -0.008 
8 0.532 0.493 0.040 0.526 0.492 0.034 0.647 0.666 -0.019 0.642 0.659 -0.016 
9 0.465 0.366 0.099 0.452 0.355 0.097 0.755 0.795 -0.040 0.766 0.804 -0.038 
10 0.539 0.382 0.157 0.548 0.391 0.157 0.711 0.781 -0.070 0.709 0.786 -0.076 
11 0.466 0.325 0.141 0.465 0.323 0.142 0.785 0.841 -0.056 0.785 0.840 -0.055 
12 0.542 0.329 0.213 0.529 0.330 0.200 0.737 0.834 -0.097 0.741 0.832 -0.090 

N=500   R=0.1 
Model       1 0.264 0.250 0.014 0.263 0.243 0.020 0.955 0.958 -0.003 0.952 0.956 -0.004 

2 0.296 0.256 0.040 0.303 0.260 0.043 0.937 0.946 -0.009 0.941 0.953 -0.012 
3 0.292 0.183 0.109 0.293 0.196 0.098 1.027 1.058 -0.030 1.028 1.057 -0.029 
4 0.366 0.201 0.165 0.361 0.202 0.159 0.997 1.052 -0.054 1.000 1.054 -0.054 
5 0.315 0.170 0.145 0.314 0.166 0.149 1.048 1.090 -0.042 1.050 1.093 -0.043 
6 0.377 0.180 0.197 0.381 0.173 0.208 1.018 1.083 -0.066 1.015 1.086 -0.071 
7 0.353 0.319 0.035 0.364 0.322 0.042 0.676 0.684 -0.008 0.674 0.684 -0.010 
8 0.417 0.349 0.068 0.412 0.353 0.059 0.644 0.663 -0.020 0.643 0.660 -0.017 
9 0.395 0.253 0.142 0.390 0.251 0.140 0.763 0.806 -0.043 0.759 0.800 -0.041 
10 0.484 0.265 0.220 0.485 0.262 0.223 0.711 0.786 -0.075 0.707 0.783 -0.077 
11 0.415 0.217 0.198 0.416 0.228 0.188 0.778 0.839 -0.060 0.785 0.843 -0.058 
12 0.508 0.235 0.274 0.502 0.220 0.282 0.730 0.831 -0.101 0.728 0.827 -0.099 

Note.   N represents selected sample size. 
R represents selection ratio. 
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Table 9 
The Number of Incumbents in the Army Project A and 

the Marine Corps JPM Studies 

394 
289 
478 

 Enlisted Job  N 

Army Project A 
1. Infantryman (1 IB) 49j 
2. Cannon Crewman (13B) 464 

3. Tank Crewman (19E) 
4. Radio Operator (31C) 
5. Vehicle Mechanic (63B) 
6. Motor Transport (64C) 507 
7. Administrative (71L) 427 

8. Medical (91 A) 392 

9. Military Police (95B) 597 

Total —9 

Marine Corps JPM 
10. Helicopter Mechanic 43 9 
11. Automotive Mechanic 694 

-1^  1TTT3 
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Table 10 
Summary of Tests in the Studies 

Subtest Description Number of Items 

ASVAB subtests 
GS General Science 25 
AR Arithmetic Reasoning 30        :. 
WK Word Knowledge 35 
PC Paragraph Comprehension 15         : 

NO Numerical Operations 50 
CS Coding Speed 84 
AS Auto & Shop Information 25 
MK Mathematical Knowledge 25 
MC Mechanical Comprehension 25 
EI Electronics Information 20 

Army Project A subtests 
ASSEM.OBJ Assembling Objects 32 
REASON Figural Reasoning 35 
MAZE Maze Test 24 
OBJ.ROT Object Rotation Test 90 
ORIENT/ Orientation Test 24 
MAP Map Test 20 
TARGET 1 Target Tracking Test 1 18 
TARGET2 Target Tracking Test 2 18 
IDENT.D Target Identification, Time 36 
EDENT.H Target Identification, Hits 30 
MEM.DIS Memory Search Test, Time 
MEM.HIT Memory Search Test, Hits 

ECAT subtests 
ID Integrating Details 40 
SM Sequential Memory 35 
AO Assembling Objects 32 
FR Figural Reasoning 35 
SO Spatial Orientation 24 
Tl One-Hand Tracking 18 
T2 Two-Hand Tracking 18 
TI Target Identification 36 
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Table 11 
Factor Scores Description 

1. Infantryman ( n = 491) 

Variable Mean Std Dev Minimum Maximum Determinacy 
Gf 48.00 4.92 34.89 60.06 0.927 
Gc 14.32 4.54 1.15 29.17 0.900 
Gv/Mech 14.86 4.30 0.15 26.94 0.865 
Speed 15.40 3.51 4.39 24.85 0.840 
Math -5.43 3.64 -18.15 6.69 0.776 
Psymotor 11.60 1.09 8.89 15.06 0.634 
G 54.10 5.42 40.19 66.32 
Hands-On 54.15 5.68 36.50 69.98 

2. Cannon Crewman ( n = 464) 

Variable Mean Std Dev Minimum Maximum Determinacy 
Gf 46.19 4.50 32.99 58.33' 0.927 
Gc 12.80 5.16 -8.74 27.93' 0.900 
Gv/Mech 12.99 4.81 -1.71 26.37 0.865 
Speed 15.31 3.62 2.47 26.63 0.840 
Math -5.24 3.44 -13.71 7.93 0.776 
Psymotor 11.80 1.22 8.74 15.98. 0.634 
G 50.90 5.68 37.04 67.84 
Hands-On 48.01 8.72 20.62 73.86 

3. Tank Crewman ( n = 394) 

Variable Mean Std Dev Minimum Maximum Determinacy 
Gf 47.65 4.72 34.74 58.39 0.927 
Gc 14.25 4.93 -2.76 25.56 0.900 
Gv/Mech 15.34 4.27 0.41 25.95 0.865 
Speed 14.88 3.64 5.18 24.37 0.840 
Math -5.17 3.44 -15.74 5.65 0.776 
Psymotor 11.62 1.08 9.05 14.90 0.634 
G 53.84 5.60 41.00 67.53 
Hands-On 59.87 5.65 39.88 72.10 
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Table 11 
Factor Scores Description (continued) 

4. Radio Operator ( n = 289) 

Variable Mean Std Dev Minimum Maximum Determinacy 
Gf 48.25 4.52 37.50 59.40 0.927 
Gc 13.80 4.53 0.85 26.33 0.900 
Gv/Mech 13.42 5.14 -3.14 26.75 0.865 
Speed 17.33 3.34 7.65 24.80 0.840 
Math -5.67 3.58 -15.67 4.23 0.776 
Psymotor 11.76 1.07 9.00 14.87 0.634 
G 53.62 5.15 41.49 65.38 
Hands-On 54.19 6.03 33.60 68.37 

5. Vehicle Mechanic ( n = 478) 

Variable Mean Std Dev Minimum Maximum Determinacy 
Gf 46.76 4.54 35.51 57.97 0.927 
Gc 13.34 4.36 -0.27 24.72 0.900 
Gv/Mech 16.60 4.65 2.45 27.80 0.865 
Speed 15.46 3.51 5.87 25.93 0.840 
Math -5.53 3.49 -17.53 4.27 0.776 
Psymotor 11.93 1.13 8.64 15.83. 0.634 
G 52.96 5.25 38.81 65.62 
Hands-On 65.14 3.70 46.20 72.75 

6. Motor Transport ( n = 507) 

Variable Mean Std Dev Minimum Maximum Determinacy 
Gf 45.51 4.66 33.03 58.21 0.927 
Gc 12.68 4.67 -1.68 24.57 0.900 
Gv/Mech 15.18 4.96 -3.05 26.72 0.865 
Speed 15.42 3.64 5.38 25.94 0.840 
Math -5.84 3.30 -16.58 4.32 0.776 
Psymotor 11.85 1.18 8.78 15.58 0.634 
G 50.86 5.06 39.39 65.14 
Hands-On 55.10 5.81 33.07 68.65 
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Table 11 
Factor Scores Description (continued) 

7. Administrative ( n = 427) 

Variable Mean Std Dev Minimum Maximum Determinacy 
Gf 47.64 4.67 33.92 59.85 0.927 
Gc 13.20 4.18 -2.38 23.84 0.900 
Gv/Mech 9.14 4.93 -4.98  :. 25.06 0.865 
Speed 18.09 3.08 7.67 25.21 0.840 
Math -5.66 3.72 -17.98 : 6.39 0.776 
Psymotor 12.27 1.16 8.95 15.91 0.634 
G 51.04 5.32 38.22 65.38 
Hands-On 45.63 6.32 25.55   * 63.64 

8. Medical ( n = 392) 

Variable Mean Std Dev Minimum Maximum Determinacy 
Gf 49.15 4.17 35.99   ■ 59.49 0.927 
Gc 15.25 4.09 -1.38   ' 28.62 0.900 
Gv/Mech 11.98 5.14 -1.09 24.42 0.865 
Speed 15.14 3.92 3.80 26.49 0.840 
Math -5.44 3.52 -14.63 4.69 0.776 
Psymotor 11.95 1.17 8.97   : 15.22 0.634 
G 54.28 4.40 44.55 65.34 
Hands-On 55.77 5.38 37.49 69.56 

9 Military Police (n = 597) 

Variable Mean Std Dev Minimum Maximum Determinacy 
Gf 49.32 3.68 37.81 58.53 0.927 
Gc 15.60 3.71 2.98 26.44 0.900 
Gv/Mech 14.95 4.42 -0.09 27.07 0.865 
Speed 15.17 3.46 3.37 25.08 0.840 
Math -5.03 3.24 -14.41 6.62 0.776 
Psymotor 11.55 1.02 8.70 15.19 0.634 
G 56.02 3.67 46.38 65.27 
Hands-On 54.12 4.71 37.99 64.87 
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Table 11 
Factor Scores Description (continued) 

10. Helicopter Mechanic ( n = 439) 

Variable Mean Std Dev Minimum Maximum Determinacy 
Gf 27.81 4.44 14.35 37.28 0.946 
Gc 25.83 4.04 7.81 34.73 0.902 
Gv/Mech 24.67 4.14 :     13.67 34.36 0,861 : 
Speed 30.49 3.70 8.01 41.93 0.859 
Math 5.42 2.94 '•     -4.15 13.27 0.742 : 

Psymotor -57.71 6.54 -79.35 -42.60 0.916 
G 50.78 3.90 40.22 61.45 
Hands-On 76.92 7.98 -    45.00 94.00 

11. Automotive Mechanic ( n = 694) 

Variable Mean Std Dev .. Minimum Maximum 
41.57 

Determinacy 
Gf 29.32 4.40 •    18.51 0.935 • 
Gc 21.67 4.21 -    -0.08 33.49 0.887 
Gv/Mech 20.42 4.03 6.12 30.77 0.858 
Speed 32.65 3.70 20.50 42.17 0.853 
Math 4.74 3.09 -5.14 13.99 0.747 
Psymotor' -58.84 6.88 -83.29 -41.49 0.883 
G 48.58 4.22 37.62 61.79 
Hands-On 77.82 7.61 43.00 93.00 
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Table 12 
Estimates for the Standardized Prediction Equation and Adjusted R Squares 

Job "N Gf Gc Gv/Mech Speed Math Psymotor Adjusted R2 

Project A  1  

1. Infantryman 491 0.258a 0.081 0.218 0.023 0.079 -0.075 0.178 
5.922b 1.854 5.087 0.512 1.764 -1.679 

2. Cannon Crewman 464 0.140; 0.034 0.113 0.001 0.021 -0.027 0!050 
2.780 0.720 2.367 0.020 0.433 -0.566 

3. Tank Crewman 394 0.242 ' 0.021 0.223 -0.075 0.080 -0.028 0.190 
4.853 0.431 4.645 -1.488 1.596 -0.562 

4. Radio Operator 289 0.338 v 0.213 0.205 0.158 0.090' 0.057 0.r229 
5.034 3.271 3.339 2.112 1.518 0.983 

5. Vehicle Mechanic 478 0.117 0.057 0.236 -0.093 0.046 -0.110 0.161 
2.581 1.256 5.264 -1.983 0.990 -2.304 

6. Motor Transport 507 0.318 ... 0.069 0.283 -0.008 0.002 -0:024 0.247 
7.524   .. 1.533 6.262 -0.181 0.051 -0.562 

7. Administrative 427 0.469 -0.026 0.055 0.054 0.041 0.053 0.348 
9.677 -0.577 1.192 1.097 0.905 1.174 

8. Medical 392 0.362 0.131 0.223 0.086 0.045 0.004 0.270 
7.033 2.524 4.666 1.724 0.880 0.084 

9. Mlitary Police 597 0.323 0.063 0.258 -0.014 0.130 0.000 0.290 
7.779 1.470 6.716 -0.357 3.327 0.003 

Marine Corps 

10. Helicopter Mechanic 439 0.404  , -0.011 0.295 0.036 0.030 -0.024 0.519 
7.983 -0.226 6.056 0.809 0.659 -0.530 

11. Automotive Mechanic 694 0.355 0.135 0.343 0.006 -0.005 -0.024 0.569 
9.667 3.763 10.138 0.171 -0.136 -0.711 

'Standardized regression coefficient. 

"r ratio. 
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Table 13 
Estimates for the Standardized Prediction Equation (Top 50 %) 

Job N Gf Gc Gv/Mech Speed Math Psymotor 

Project A 

I. Infantryman 246 0.228a 0.123 0.177 0.026 -0.028 0.040 

3.252b 1.675 2.507 0.403 -0.407 0.571 

2. Cannon Crewman 232 0.004 -0.088 0.061 -0.052 0.028 -0.047 

' 0.064 -1.246 0.875 ■ -0.737 0.394 -0.662 

3. Tank Crewman 197 0.036 0.085 0.248 -0.099 0.120 -0.088 

B 
0.450 1.163 3.268. -1.354 1.591 -1.186 

4. Radio Operator 145 0.200 0.220 0.172 0.085 0.121 0.089 

1.950 2.267 1.870 0.905 1.387 1.003 

5. Vehicle Mechanic 239 0.086 -0.034 0.116 -0.162 0.065 -0.088 

1.246 -0.486 1.667 -2.359 0.933 -1.223 

6. Motor Transport 254 0.261 0.144 0.324 0.006 -0.055 -0.051 

3.982 2.082 4.620 0.087 -0.869 -0.781 

7. Administrative 214 0.452 0.029 0.144 0.048 0.023 0.041 

6.537 0.422 2.199 0.734 0.351 0.635 

8. Medical 196 0.288 0.064 0.171 0.106 0.124 -0.007 

3.280 0.822 2.077 1.471 1.595 -0.084 

9. Military Police 299 0.203 0.011 0.142 -0.074 0.241 -0.026 

3.007 0.175 2.278 -1.290 3.983 -0.437 

Marine Corps 

10. Helicopter Mechanic 220 0.331 0.034 0.315 0.012 0.017 0.062 

4.397 0.456 4.457 0.185 0.256 0.920 

11. Automotive Mechanic 347 0.268 0.156 0.354 -0.003 0.014 -0.002 

4.557 2.763 6.885 -0.062 0.275 -0.035 

"Standardized regression coefficient. 
br ratio. 
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Table 14 
Spearman Rank-Order Correlations 

(Predicted Y with Hands-On Job Performance) 

Job N g + 5s g + s si 

Project A 

1. Infantryman 491 0.351a 0.338 0.331 
8.277b* 7.946 7.754 

2. Cannon Crewman 464 0.222 0.216 0.218 
4.901 4.743 4.803 

3. Tank Crewman 394 0.375 0.355 0.337 
8.014 7.522 7.085 

4. Radio Operator 289 0.402 0.390 0.391 
7.430- 7.177 7.206 

5. Vehicle Mechanic 478 0.322 0.308 0.267 
7.410 7.059 6.043 

6. Motor Transport 507 0.414 0.409 0.365 
i 10.220 10.070 8.822 

7. Administrative 427 0.439 0.430 0.374 
10.079 9.830 8.320 

8. Medical 392 0.377 0.368 0.369 
8.044 7.815 7.842 

9. Military Police 597 0.394 0.391 0.367 

10.464 10.364 9.613 

Marine Corps 
10. Helicopter Mechanic 439 0.400 0.400 0.293 

9.113 9.111 6.415 

11. Automotive Mechanic    694      0.488        0.487        0.395 

 14.724        14.651        11.327 
aSpearman rank-order correlation. 
bf ratio. 
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Table 15 
Job Classifications 

Job    . Selection Failure Failure Success Success Proportion of 
(Top 50%) 

Project A 

N      Method Reject Accept Reject Accept Sensitivity Specificity Correct Decisions 

1. Infantryman 491   g + S's 148 97 97 149 60.57% 60.41% 60.49% 
g + s' 149 96. 96 150 60.98% 60.82% 60.90% 
Si 149 96 96 150 60.98% 60.82% 60.90% 

2. Cannon Crewman 464   £ + ■** 125 107 107 125 53.88% 53.88% 53.88% 
i 141 91- 91 141 60.78% 60.78% 60.78% 
Si 140 92 92 140 60.34% 60.34% 60.34% 

3. Tank Crewman 394  g + S's 123 74 74 123 62.44% 62.44% 62.44% 

,„. 
g + s 120 77. 77 .    120 60.91% 60.91% 60.91% 
Si 125 72 72 125 63.45% 63.45% 63.45% 

4: Radio Operator 289  g + 5s 95 49 49 96 66.21% 65.97% 66.09% 
g + s 88 56 56 89 61.38% 61.11% 61.25% 

Si 96 48 48 97 66.90% 66.67% 66.78% 

5. Vehicle Mechanic 478  g + 5s 155 84. 84 155 64.85% 64.85% 64.85% 
g + s 144 95 95 144 60.25% 60.25% 60.25% 

Si 148 91 91 148 61.92% 61.92% 61.92% 

6. Motor Transport 507  g + ^S 160 93 93 161 63.39% 63.24% 63.31% 
g + s 154 99 99 155 61.02% 60.87% 60.95% 

' Si 158 95 95 159 62.60% 62.45% 62.52% 

7. Administrative 427   g + is 136 77 77 137 64.02% 63.85% 63.93% 
g + s 135 78 78 136 63.55% 63.38% 63.47% 

SI 128 85 85 129 60.28% 60.09% 60.19% 

8. Medical 392  g + 5s 123 73 73 123 62.76% 62.76% 62.76% 
g + s 121 75 75 121 61.73% 61.73% 61.73% 
Si 122 74 74 122 62.24% 62.24% 62.24% 

9. Military Police 597  8 + 5S 
191 107 107 192 64.21% 64.09% 64.15% 

g + s 186 112 112 187 62.54% 62.42% 62.48% 
Si 186 112 112 187 62.54% 62.42% 62.48% 

Marine Corps 

10. Helicopter Mechanic 439   S + 5S 
140 79 79 141 64.09% 63.93% 64.01% 

g + s 140 79 79 141 64.09% 63.93% 64.01% 
Si 131 88 88 132 60.00% 59.82% 59.91% 

11. Automotive Mechani 694   i + 5J 
240 107 107 240 69.16% 69.16% 69.16% 

g + s 240 107 107 240 69.16% 69.16% 69.16% 
Si 225 122 122 225 64.84% 64.84% 64.84% 

Note. Regression based on selected sample from sing] e-factor model. 
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Figure 1 
Observed Data Pattern with Missing Data on Criterion 
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Figure 2 
General Form of the Decision Table 
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Figure 3 
Data Pattern for Cross-Validation in the Selected Sample 
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Figure 4 
Single-Factor Model 
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Figure 5 
Hierarchical Factor Model 
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Figure 6 
Data Pattern for the Artificial Data 

XJ    x2    x3   ... x9    xw     y    g s    gj    g   s   $>£+; 

Ns+I 

N 

Selected Sample 

Non-selected Sample 

98 



Figure 7 
Plots of Classification forg + 1 s 
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Figure 7 
Plots of Classification for g + 1 s 

Specificity 
(N=250, R=0.5) 

i       64 00% -j. 

5        3 I        6        4        ;       11       9       12       7       io 

Model 

Specificity 
(N=250,R=O.l) 

94 00% i 

9: oo% j 

90 00% j 

88 00% -l 
I 

86 00% i 

84 00% j— 

5        3        «        1        4        I       11        9       12       7       10       8 

Model 

Specificity 
(N=500,R=0.1) 

j      86.00% ■ - 

100 



Figure 7 
Plots of Classification for g + 1 s 
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Figure 8 
Plots of Classification for g + 2 s- 
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Figure 8 
Plots of Classification for g + 2 s 
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Figure 8 
Plots of Classification for g + 2 s 
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Figure 9 
Plots of Classification for g + 3 s 
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Figure 9 
Plots of Classification for g + 3 s 

68.00% 

Specificity 
(N=250, R=0.5) 

Specificity 
(N=250,R=0.1) 

92.00% 

90.00% 

Bg.00% 

86.00% 

84.00%  1 1 1 1 1 1 1 1 1 1 

5        3        6        4 1 2       11        9       12      10       7        8 

Model 

-tu—I 

-X-g+3i 

Specificity 
(N=500, R=0.5) 

Specificity 
(N=500,R=0.1) 

_x—x—2 

92.00% 

90.00% 

88.00% 

86.00% .. 

84.00% -I 

i       3       6       4        1       2      11      9      12     10      7 

Model 

106 



Figure 9 
Plots of Classification for g.+ 3 s 
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Figure 10 
Plots of Difference forg + 1 s Classification 
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Figure 11 
Plots of Difference for g + 2 s Classification 
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Figure 12 
Plots of Difference for g + 3 s Classification 
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Figure 13 
Plots of Spearman Rank-Order Correlation for g + 1 s 
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Figure 14 
Plots of Spearman Rank-Order Correlation for g + 2 s 
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Figure 15 
Plots of Spearman Rank-Order Correlation for g + 3 
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Figure 16 
Plots of Difference for Cross-Validation of g + 1 s 
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Figure 17 
Plots of Difference for Cross-Validation of g + 2 s 
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Figure 18 
Plots of Difference for Cross-Validation of g + 3 s 
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Appendix A 

The Factor Structure 
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Table Al 
The Factor Structure for ASVAB and Project A Subtests 

Subtest Gf Gc Gv/Mech Speed Math 

0.17 

Psymotor 
General Science 0.56 0.55 0.24 „ 

Arithmetic Reasoning 0.67 0.27 0.20 0.18 0.31 
Word Knowledge 0.57 0.72 „ 0.12 
Paragraph Comprehension 0.56 0.54 — 0.22 
Numerical Operations 0.42 —   0.72 0.16 
Coding Speed 0.44 _ __ 0.63 
Auto & Shop; Information 0.20 0.45 0.70 
Mathematical Knowledge 0.68 0.13   0.16 0.57 0 08 
Mechanical Comprehension 0.57 0.32 0.52 _ 0 13 -0 05 
Electronics Information 0.31 0.51 0.53 0 15 
Assembling Objects 0.68   0.27 
Figural Reasoning 0.77   0.17 
Maze Test 0.56 — 0.29 „ -0 35 
Object Rotation Test 0.48 — 0.31 __ -0 22 
Orientation Test 0.63   0.28 
Map Test 0.72 0.13 0.29 0.11 
Target Tracking Test 1   ' -0.38 — -0.35 „ 0 30 
Target Tracking Test 2 -0.40   -0.36 0 30 
Target Identification, Time -0.40 — -0.27 „ 041 
Target Identification, Hits 0.23 «. 
Memory Search Test, Time -0.17 0.10 -0.06 
Memory Search Test. Hits 0.37 — - — - 

Note. From "The nature of the general factor m hierarchical models of the structure of cognitive abilities: alternative 

models tested on data from regular and expenmental mihtary enlistment tests," by J. E. Gustafsso,, and B. Muthen, 1994, 
UCLA Technical Report p. 15. Adapted with permission of the author. 

119 



Table A2 
The Factor Structure for ASVAB and ECAT Subtests 

Subtest Gf Gc Gv/Mech Speed Math Psymotor 
General Science 0.59 0.52 0.25 __ 0.17 
Arithmetic Reasoning 0.73 0.21 0.17 0.17 0.27 
Word Knowledge 0.58 0.71   0.12 
Paragraph Comprehension 0.54 0.55   0.24 
Numerical Operations 0.41 —   0.71 0.16 
Coding Speed 0.41 —   0.66 
Auto & Shop Information 0.28 0.38 0.70 
Mathematical Knowledge 0.68 0.12 0.49 0.18 0.57 
Mechanical Comprehension 0.60 0.28 0.55 ... 0.14 
Electronics Information 0.38 0.44 „ 0.14 
Assembling Objects 0.72 — 0.29 .. 
Integrating Details 0.76   0.26 
Sequential Memory 0.70   __ 
Figural Reasoning 0.76   0.11 
Spatial Orientation 0.68   0.26 
One-Hand Tracking -0.44 — -0.21 .. 0.68 
Two-Hand Tracking -0.47   -0.27 0.72 
Target Identification -0.38 ~ -0.16 ~ ~ 0.23 

Note. From "The nature of the general factor in hierarchical models of the structure of cognitive abilities: alternative 

models tested on data from regular and experimental military enlistment tests," by J. E. Gustafsson and B. Muthen, 1994, 

UCLA Technical Report, p. 12. Adapted with permission of the author. 
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Appendix B 

Job Profile Description 
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TOP NEW 

Job 1 (Infantryman) 

TABLE OF TOP BY NEW 

Frequenc y\ 
Percent i 
Row Pet i 
Col Pet I ] 21 31 41 51 Total 

0 62 1 71 1 85 1 86 1 87 1 391 
I 12.63 1 14.46 I 17.31 1 17.52 1 17 72 1 79.63 
I 15.86 1 18.16 1 21.74 1 21.99 1 22 25 1 

62.00 1 71.00 1 85.00 1 86.00 1 95 60 1 

1 l 38 1 29 1 15 14 1 4 1 100 
l 7.74 1 5.91 1 3.05 1 2.85 1 0 81 1 20.37 
I 38.00 1 29.00 1 15.00 1 14.00 1 4 00 1 
I 38.00 1 29.00 1 15.00 1 14.00 1 4 40 1 

Total 100 100 100 100 91 491 
20.37 20.37 20.37 20.37 18 53 100.00 

TOP SIG 

TABLE OF TOP BY SIG 

Frequenc y\ 
Percent l 
Row Pet l 
Col Pet I n 21 31 41 51 Total 

0 1 64 1 71 1 84 1 87 1 85 1 391 
l 13.03 1 14.46 1 17.11 1 17.72 1 17 31 1 79.63 
l 16.37 1 18.16 1 21.48 1 22.25 1 21 74 1 
I 64.00 1 71.00 1 84.00 1 87.00 1 93 41 1 

1 I 36 1 29 1 16 1 13 1 6 1 100 
l ; 7.33 1 5.91 1 3.26 1 2.65 1 1 22 1 20.37 
l 36.00 1 29.00 1 16.00 1 13.00 1 6 00 1 
1 36.00 1 29.00 1 16.00 1 13.00 1 6 59 1 

Total 100 100 100 100 91 491 
20.37 20.37 20.37 20.37 18 53 100.00 

TOP GEN 

TABLE OF TOP BY GEN 

Frequency I 
Percent  | 
Row Pet  | 
Col Pet  | LI 21 31 41 51 Total 

0 1 62 1 70 I 87 1 88 1 84 1 391 
1 12.63 1 14.26 I 17.72 1 17.92 1 17 11 1 79.63 
I 15.86 1 17.90 | 22.25 1 22.51 1 21 48 1 
1 62.00 1 70.00 | 87.00 1 88.00 1 92 31 1 

1 1 38 1 30 I 13 1 12 1 7 1 100 
1 7.74 1 6.11 | 2.65 1 2.44 1 1 43 1 20.37 
1 38.00 1 30.00 I 13.00 1 12.00 1 7 00 1 
1 38.00 1 30.00 I 13.00 1 12.00 1 7 69 1 

Total 100 100 100 100 91 491 
20.37 20.37 20.37 20.37 18 53 100.00 
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TOP NEW 

Job 2 (Cannon Crewman) 

TABLE OF TOP BY NEW 

Frequency I 
Percent I 
Row Pet | 
Col Pet  | II 31 

Total 

41 

I 
I 

 +- 

1 I 

64 
13.79 
17.58 
64.00 

79 
17.03 
21.70 
79.00 

78 
16.81 
21.43 
78.00 

86 
18.53 
23.63 
86.00 

36 
7.76 

36.00 
36.00 

21 
4.53 

21.00 
21.00 

22 
4.74 

22.00 
22.00 

14 
3.02 

14.00 
14.00 

100 
21.55 

100 
21.55 

100 
21.55 

100 
21.55 

 H 

57 | 
12.28 | 
15.66 I 
89.06 | 
 + 

7 I 
1.51 I 
7.00 I 

10.94 | 
 + 

64 
13.79 

Total 

364 
3.45 

100 
21.55 

464 
100.00 

TOP SIG 

TABLE OF TOP BY SIG 

Frequency| 
Percent  | 
Row Pet  I 
Col Pet  I 1| 21 31 41 51 Total 

0 1 65 I ■78 | 75 1 88 58 1 364 
14.01 | 16.81 | 16.16 1 18.97 12 50 1 78.45 
17.86 I 21.43 I 20.60 1 24.18 15 93 1 
65.00 | 78.00 I 75.00 1 88.00 90 63 1 

1 | 35 I 22 | 25 1 12 6 1 100 
. 7.54 | 4.74 | 5.39 1 2.59 1 29 1 21.55 
35.00 I 22.00 I 25.00 1 12.00 6 no 1 
35.00 | 22.00 | 25.00 1 12.00 9 38 1 

Total 100 100 100 100 64 464 
21.55 21.55 21.55 21.55 13 79 100.00 

TOP GEN 

TABLE OF TOP BY GEN 

Frequency I 
Percent  1 
Row Pet  I 
Col Pet  | 11 21 31 41 51 

0 1 68 | 71 1 83 I 87 55 | 
14 66 | 15 30 | 17 89 I 18 75 11 85 | 
18 68 I 19 51 1 22 80 | 23 90 15 11 1 
68 00 I 71 00 I 83 00 | 87 00 85 94 I 

1 I 32 | 29 | 17 I 13 9 1 
6 90 I 6 25 I 3 66 | 2 80 1 94 | 

32 00 | 29 00 I 17 00 I 13 00 9 00 | 
32 00 I 29 00 I 17 00 I 13 00 14 06 | 

Total 100 
21.55 

100 
21.55 

100 
21.55 

100 
21.55 

64 
13.79 

Total 

364 
78.45 

100 
21.55 

464 
100.00 
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TOP 

Job 3 (Tank Crewman) 

TABLE OF TOP BY NEW 

Frequenc y\ 
Percent I 
Row Pet I 
Col Pet I 11 21 31 41 Total 

0 I 61 1 68 I 78 1 87 1 294 
I 15 48 1 17 26 | 19 80 | 22 08 1 74.62 
I 20 75 1 23 13 I 26 53 1 29 59 1 
l 61 00 1 68 00 | 78 00 1 92 55 1 

1 I 39 1 32 | 22 1 7 1 100 
I 9 90 1 8 12 I 5 58 1 1 78 1 25.38 
I 39 00 1 32 00 | 22 00 1 7 00 1 
I 39 00 1 32 00 | 22 00 1 7 45 1 

Total 100 
25.38 

100 
25.38 

100 
25.38 

94 
23.86 

394 
100.00 

TOP SIG 

TABLE OF TOP BY SIG 

Frequency I 
Percent 1 
Row Pet 1 
Col Pet 1 LI 21 31 41 Total 

0 1 59 1 71 1 78 1 86 1 294 
1 14.97 1 18.02 1 19.80 1 21 83 1 74.62 
1 20.07 1 24.15 1 26.53 1 29 25 
1 59.00 1 71.00 1 78.00 1 91 49 1 

1 1 41 1 29 1 22 1 8 1 100 
1 10.41 1 7.36 1 5.58 1 2 03 1 25.38 
1 41.00 1 29.00 1 22.00 1 8 00 1 
1 41.00 1 29.00 1 22.00 1 8 51 1 

Total 100 100 100 94 394 
25.38 25.38 25.38 23 86 100.00 

TOP GEN 

TABLE OF TOP BY GEN 

Frequency 1 
Percent  I 
Row Pet  I 
Col Pet  I 11 21 31 H Total 

0 1 63 1 65 1 82 1 84 294 
15.99 1 16.50 1 20.81 1 21 32 1 74.62 
21.43 1 22.11 1 27.89 1 28 57 1 
63.00 1 65.00 1 82.00 1 89 36 1 

1 I 37 1 35 1 18 1 10 1 100 
9.39 1 8.88 1 4.57 | 2 54 1 25.38 

37.00 1 35.00 1 18.00 1 10 00 1 
37.00 1 35.00 1 18.00 1 10 64 1 

Total 100 100 100 94 394 
25.38 25.38 25.38 23 86 100.00 
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TOP NEW 

Job 4 (Radio Operator) 

TABLE OF TOP BY NEW 

Frequenc yi 
Percent 1 
Row Pet ! 
Col Pet 1 11 21 31 Total 

0 | 49 1 67 1 67 1 183 
1 17.50 1 23.93 1 23 93 1 65.36 
1 26.78 1 36.61 | 36 61 1 
1 49.00 1 67.00 1 83 75 1 

1 1 51 1 33 1 13 1 97 
1 18.21 1 11.79 1 4 64 1 34.64 
1 52.58 1 34.02 1 13 40 1 
1 51.00 1 33.00 1 16 25 1 

Total 100 100 80 280 
35.71 35.71 28 57 100.00 

Frequency Missing = 9 

TABLE OF TOP BY SIG 

TOP 3IG 

Frequency I 
Percent  | 
Row Pet  | 
Col Pet  | 11 21 31 Total 

0 1 
1 
1 
1 

50 I 
17.30 I 
26.46 I 
50.00 | 

63 I 
21.80 I 
33.33 I 
63.00 | 

26 
40 
85 

76 I 
30 I 
21 1 
39 | 

189 
65.40 

1 1 
1 
1 
1 

50 | 
17.30 I 
50.00 I 
50.00 | 

37 | 
12.80 | 
37.00 I 
37.00 I 

4 
13 
14 

13 I 
50 | 
00 I 
61 1 

100 
34.60 

Total 100 100 89 289 
34.60 34.60 30.80   100.00 

TABLE OF TOP BY SEN 

TOP 3EN 

Frequency| 
Percent  I 
Row Pet  | 
Col Pet  I 11 21 31 Total 

0 1 45 I 70 I 74 1 189 
15.57 | 24.22 I 25 61 1 65.40 
23.81 | 37.04 | 39 15 I 
45.00 I 70.00 I 83 15 1 

1 | 55 | 30 | 15 1 100 
19.03 | 10.38 I 5 19 1 34.60 
55.00 I 30.00 I 15 00 1 
55.00 | 30.00 | 16 85 1 

Total 100 100 89 289 
34.60 34.60 30 80 100.00 
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TOP NEW 

Job 5 (Vehicle Mechanic) 

TABLE OF TOP BY NEW 

Frequency I 
Percent 1 
Row Pet 1 
Col Pet 1 11 21 31 41 5 1 Total 

0 1 70 1 72 | 78 1 85 1 73 1 378 
1 14 64 1 15 06 | 16 32 1 17 78 1 15.27 1 79.08 
1 18 52 1 19 05 I 20 63 1 22 49 1 19.31 1 
1 70 00 1 72 00 I 78 00 1 85 00 1 93.. 59 1 

1 1 30 1 28 I 22 1 15 1 5 1 100 
1 6 28 1 5 86 | 4 60 1 3 14 1 1". 05 20.92 
1 30 00 1 28 00 | 22 00 1 15 00 1 5.00 1 
1 30 00 1 28 00 I 22 00 1 15 00 1 6.41 

Total 100 
20.92 

100 
20.92 

100 
20.92 

100 
20.92 

78 
16.32 

478 
100.00 

TOP SIG 

TABLE OF TOP BY SIG 

Frequency I 
Percent 1 
Row Pet 1 
Col Pet 1 LI 21 31 41 ..  5 1 Total 

0 1 70 1 74 | 76 1 85 1 73 1 378 
1 14 64 1 15 48 | 15 90 1 17 78 1 15.27 1 79.08 
1 18 52 1 19 58 I 20 11 1 22 49 1 19.31 1 
1 70 00 1 74 00 | 76 00 1 85 00 1 93.59 1 

1 ! , 30 1 26 | 24 1 15 1 5 1 100 
1 6 28 1 5 44 | 5 02 1 3 14 1 1.05 1 20.92 
1 . 30 00 1 26 00 I 24 00 1 15 00 1 5.00 1 
1 30 00 1 26 00 | 24 00 1 15 00 1 6.41 1 

Total 100 
20.92 

100 
20.92 

100 
20.92 

100 
20.92 

78 
16.32 

478 
100.00 

TOP GEN 

TABLE OF TOP BY GEN 

Frequency| 
Percent  1 
Row Pet  | 
Col Pet  I LI 21 31 11 31 Total 

0 1 68 80 | 76 | 84 70 1 378 
14 23 16 74 | 15 90 | 17 57 14 64 1 79.08 
1/ 99 21 16 | 20 11 1 22 22 18 52 1 
68 00 80 00 | 76 00 I 84 00 89 74 1 

1 | 32 20 | 24 | 16 8 1 100 
6 69 4 18 | 5 02 | 3 35 1 67 1 20.92 

32 0Ü 20 00 I 24 00 | 16 00 8 00 1 
32 00 20 00 | 24 00 | 16 00 10 26 1 

Total 100 
20.92 

100 
20.92 

100 
20.92 

100 
20.92 16.32 

478 
100.00 
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Job 6 (Motor Transport) 

TABLE OF TOP BY NEW 

TOP NEW 

Frequency I 
Percent | 
Row Pet I 
Col Pet  I II 41 

Total 

 + + +_ 

57   | 77   | 84    I 
11.24 | 15.19 | 16.57 | 
14.00 I 18.92 I 20.64 | 
57.00   I      77.00   I      84.00   I 
 + + +_ 

23   | 16   I 
4.54   I        3.16   I 

I 43 
I 8.48 
I 43.00 
I 43.00 

23.00   I 
23.00   I 

16.00 
16.00 

88 I 
17.36 | 
21.62 I 
88.:00 I 
 +- 

12 I 
2.37 | 

12/00 I 
12.00 I 

100 
19.72 

100 
19.72 

100 
19.72 

100 
19.72 

101 | 
19.92 | 
24.82 I 
94.39 | 
 + 

6 I 
1.18 I 
6.00 | 
5.61 I 
 + 

107 
21.10 

Total 

407 
30.28 

100 
19.72 

507 
100.00 

TABLE OF TOP BY SIG 

TOP SIG 

Frequency I 
Percent 1 
Row Pet 1 
Col Pet 1 11 21 31 4I 51 Total 

0 1 59 1 76 I 81 1 89 1 102 1 407 
1 11.64 1 14.99 I 15.98 1 17.55 1 20.12 1 80.28 
1 14.50 1 18.67 | 19.90 1 21.87 1 25.06 1 
1 59.00 1 76.00 I 81.00 1 89.00 1 95.33 1 

1 1 / 41 1 24 | 19 1 11 1 5 1 100 
1 8.09 1 4.73 [ 3.75 1 2.17 1 0.99 1 19.72 
1 41.00 1 24.00 I 19.00 1 11.00 1 5.00 1 
1 41.00 1 24.00 | 19.00 1 11.00 1 4.67 1 

Total 100 100 100 100 107 507 
19.72 19.72 19.72 19.72 21.10 100.00 

TABLE OF TOP BY GEN 

TOP GEN 

Frequency 1 
Percent 1 
Row Pet 1 
Col Pet 1 11 21 31 41 51 Total 

0 1 65 I 70 I 88 1 82 1 102 1 407 
1 12.82 I 13.81 | 17.36 | 16.17 1 20.12 1 80.28 
1 15.97 | 17.20 1 21.62 1 20.15 1 25.06 1 
1 65.00 I 70.00 I 88.00 1 82.00 1 95.33 

1 1 35 I 30 I 12 1 18 1 5 1 100 
1 6.90 I 5.92 | 2.37 1 3.55 1 0.99 1 19.72 
1 35.00 I 30.00 I 12.00 1 18.00 1 5.00 1 
1 35.00 1 30.00 I 12.00 1 18.00 1 4.67 1 

Total 100 100 100 100 107 507 
19.72 19.72 19.72 19.72 21.10 100.00 
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Job  7   (Administrative) 

TABLE   OF  TOP   BY   NEW 

TOP NEW 

Frequency] 
Percent  I 
Row Pet | 
Col Pet 1 11 ..21 31 41 Total 

0 1 
1 
1 
1 

55 
12.88 
16.82 
55.00 

1 
1 
1 
1 

77 
18.03 
23.55 
77.00 

1 
1 
1 
1 

81 
18.97 
24.77 
81.00 

1 
1 
1 
1 

114 
26.70 
34.86 
89.76 

1 
1 
1 
1 

327 
76.58 

1 1 
1 
1 
1 

45 
10.54 
45.00 
45.00 

1 
1 
1 
1 

23 
5.39 

23.00 
23.00 

1 
1 
1 
1 

19 
4.45 

19.00 
19.00 

1 
I 
1 
1 

13 
3.04 

13.00 
10.24 

1 
1 

100 
23.42 

Total 100 
23.42 

100 
23.42 

100 
23.42 

127 
29.74 

427 
100.00 

TOP SIG 

TABLE OF TOP BY SIG 

Frequency I 
Percent  I 
Row Pet 1 
Col Pet 1 ii 21 31 41 Total 

0 1 
1 
1 
1 

56 
13.11 
17.13 
56.00 

1 
1 

1 

72 I 
16.86 | 
22.02 I 
72.00 I 

85 
19.91 
25.99 
85.00 

1 
1 
1 
1 

114 
26.70 
34.86 
89.76 

1 
1 
1 
1 

1 
1 
1 
1 

327 
76.58 

1 ;i 

i 

44 
10.30 
44.00 
44.00 

1 
1 
1 
1 

28 I 
6.5 6 | 

28.00' I 
28.00 | 

15 
3.51 

15.00 
15.00 

1 
1 
1 
1 

13 
3.04 

13.00 
10.24 

100 
23.42 

Total 100 
23.42 

100 
23.42 

100 
23.42 

127 
29.74 

427 
100.00 

TABLE OF TOP BY GEN 

TOP 

Frequency I 
Percent | 
Row Pet | 
Col Pet  I 

GEN 

21 31 

60 I 76 I 79 I 112 
14.05 I 17.80 | 18.50 I 26.23 
18.35 I 23.24 I 24.16 I 34.25 
60.00 I 76.00 I 79.00 | 88.19 

Total 

II 40 | 24 I 21 | 15 
I 9.37 | 5.62 I 4.92 | 3.51 
I 40.00 I 24.00 | 21.00 I 15.00 
I 40.00 I 24.00 I 21.00 | 11.81 

100      100 
23.42   23.42 

100 
23.42 

127 
29.74 

Total 

327 
76.58 

100 
23.42 

427 
100.00 
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TOP NEW 

Job 8 (Medical) 

TABLE OF TOP BY NEW 

Frequency I 
Percent  | 
Row Pet 1 
Col Pet 1 1.1 21 3] 41 Total 

0 1 
1 
1 
1 

59 
15.05 
20.21 
59.00 

1 
1 

■ 1 

70 
17.86 
23.97 
70.00 

1 
1 

1 

80 
20.41 
27.40 
80.00 

1 
1 
1 
1 

21 
28 
90 

83 
17 
42 
22 

1 
1 
1 
1 

292 
74.49 

1 1 
I 
1 
1 

41 
10.46 
41.00 
41.00 

•1 

1 

30 
7.65 

30.00 
30.00 

1 
1 
1 
1 

20 
5.10 

20.00 
20.00 

1 
1 
1 
1 

2 
9 
9 

9 
30 
00 
78 

1 
1 
1 
1 

100 
25.51 

Total 100 
25.51 

100 
25.51 

100 
25.51 23 

92 
47 

392 
100.00 

TOP SIG 

TABLE OF TOP BY SIG 

Frequenc y\ 
Percent 1 
Row Pet 1 
Col Pet 1 11 21 31 41 Total 

0 1 60 1 69 1 81 1 82 1 292 
1 15.31 1 17.60 1 20.66 1 20 92 1 74.49 
1 20.55 1 23.63 1 27.74 1 28 08 1 
1 60.00 1 69.00 1 81.00 1 89 13 1 

1 1 40 1 31 1 19 1 10 1 100 
1 10.20 t 7.91 1 4.85 1 2 55 1 25.51 
1 40.00 1 31.00 1 19.00 1 10 00 1 
1 40.00 1 31.00 1 19.00 1 10 87 1 

Total 100 100 100 92 392 
25.51 25.51 25.51 23 47 100.00 

TOP GEN 

TABLE OF TOP BY GEN 

Frequency 1 
Percent 1 
Row Pet 1 
Col Pet 1 1 21 31 41 Total 

0 1 59 1 71 1 79 1 83 1 292 
1 15.05 1 18.11 1 20.15 1 21 17 1 74.49 
1 20.21 1 24.32 1 27.05 1 28 42 1 
I 59.00 1 71.00 1 79.00 1 90 22 1 

1 1 41 1 29 1 21 1 9 1 100 
1 10.46 1 7.40 | 5.36 1 2 30 1 25.51 
1 41.00 1 29.00 1 21.00 1 9 00 1 

41.00 1 29.00 1 21.00 1 9 78 1 

Total 100 100 100 92 392 
25.51 25.51 25.51 23 47 100.00 
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Job 9 (Military Police) 

TABLE OF TOP BY NEW 

TOP NEW 

Frequency I 
Percent I 
Row Pet | 
Col Pet  I 
 +- 

Total 

41 
—+- 

I 64 I 77 | 87 | 90 
I 10.72 I 12.90 I 14.57 | 15.08 
I 12.88 I 15.49 I 17.51 | 18.11 
I 64.00 I 77.00 I 87.00 I 90.00 

I  1 
I  1 

•51 
 +- 

86 I 
4.41 | 
7.30 I 
6.0Q | 

II 36 | 23 I 13 | 10 
I 6.03 I 3.85 I 2.18 I 1.68 
I 36.00 I 23.00 | 13.00 | 10.00 
I 36.00 I 23.00 I 13.00 | 10.00 

14 I 
2.35 I 
4.00 I 
4.00 1 

100 
16.75 

100      100 
16.75    16.75 

100 
L6.75 

100 
L6.75 

93 
15.58 
18.71 
95.88 

6| Tot 
-+ 

I 497 
I 83.25 

4 
0.67' 
4.00' 
4.12 

97 
16.25 

100 
16.75 

597 
100.00 

TABLE OF TOP BY SIG 

TOP SIG 

Percent 1 
Row Pet 1 
Col Pet 11 21 31 41 51 61 Tot 

0 1 62 I 80 I 86 I 88 1 88 1 93 4 97 
1 10.39 I 13.40 | 14.41 I 14.74 1 14.74 1 15 58 1 83.25 
1 12.47 | 16.10 I 17.30 I 17.71 1 17.71 1 18 71 
1 62.00 | 80.00 I 86.00 I 88.00 I 88.00 1 95 88 1 

1 1 ■ 38 I 20 I 14 I 12 1 12 1 4 1 100 
1 6.37 I 3.35 I 2.35 I 2.01 1 2.01 1 0 67 1 16.75 
1 38.00 I 20.00 | 14.00 | 12.00 1 12.00 1 4 00 1 
1 38,00 I 20.00 I 14.00 | 12.00 1 12.00 1 4 12 1 

Total 100 100 100 100 100 97 597 
16.75 16.75 16.75 16.75 16.75 16 25 100.00 

TOP GEN 

TABLE OF TOP BY GEN 

Frequency I 
Percent I 
Row Pet I 
Col Pet  | 
 +- 

II 21 31 41 

Total 

0 I 65 I 
I 10.89 I 
I 13.08 I 
I 65.00 I 

76 87 
12.73 I 14.57 
15.29 | 17.51 
76.00 I  87.00 
 +  

89 I 
14.74 
17.71 
88.00 

14.91 
17.91 
89.00 

I 35 I 
I 5.86 | 
1 35.00 | 
I 35.00 | 

24 
4.02 

24.00 
24.00 

13 
2.18 
13.00 
13.00 

12 
2.01 
12.00 
12.00 

11 
1.84 

11.00 
11.00 

100 
16.75 

100 
16.75 

100 
16.75 

100 
16.75 

100 
16.75 

6|  Tot 

92 I 
15.41 I 
18.51 | 
94.85 I 
 + 

5 I 
0.84 | 
5.00 I 
5.15 I 
 + 

97 
16.25 

497 
33.25 

100 
16.75 

597 
100.00 
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Job 10 (Helicopter Mechanic) 

TABLE OF TOP ,BY NEW 

TOP NEW 

Frequency| 
Percent | 
Row Pet I 
Col Pet  I II 21 41 Total 

I 61 I 71 |     81 |; 87 
I 13.90 I 16.17 | 18.45 I 19.82 
I 17.99 I 20.94 | 23.89 I' 25.66 
I 61.00 I 71.00 ! 81.00 \'- 87.00 

-+- 

I 
I   8. 
i: ii. 
I-100. 
+  

39 
.88 
.50 
.00 

1 I 39 
8.88 

39.00 
39.00 

I 29 I 
I 6.61 | 4 
I 29.00 | 19 
I 29.00 I 19 

19 
.33 
.00 
.00 

2 
13 
13 

13 
.96 
.00 
.00 

I , 0 
I 0 
I o 
+  

Total 100 
22.78 

100 
22.78 

100 
22.78 

100 
22.78 

0 
00 
.00 
00 

39 

339 
77.22 

100 
22.78 

439 
100.00 

TABLE OF TOP BY SIG 

TOP SIG 

Frequency| 
Percent ] 
Row Pet I 
Col Pet  I II 21 

Total 

5 1  Total 

0 1 61 1 70 | 83 1 86 I     39 1 339 
1 13.90 1 15.95 I 18.91 1 19.59 I   8.88 1 77.22 
1 17.99 1 20.65 1 24.48 1 25.37 |  11.50 1 
1 61.00 1 70.00 | 83.00 1 86.00 | 100.00 1 

1 1 39 1 30 I 17 1 14 I :    0 1 100 
1 , 8.88 1 6.83 I 3.87 1 3.19 I   0.00 1 22.78 
1 39.00 1 30.00 I 17.00 1 14.00 I   0.00 1 
1 39.00 1 30.00 I 17.00 1 14.00 I   0.00 1 

100 
22.78 

100 
22.78 

100 
22.78 

100 
22.78 

39 439 
100.00 

TABLE OF TOP BY GEN 

TOP GEN 

Frequency I 
Percent  1 
Row Pet  | 
Col Pet  I 11 21 31 41 5 

0 1 68 1 72 | 75 1 88 I 36 
15 49 1 16 40 I 17 08 1 20 05 I 8 20 
20 06 1 21 24 I 22 12 1 25 96 | 10 62 
68 00 72 00 | 75 00 1 88 00 I 92 31 

1 I 32 1 28 I 25 1 12 I 3 
7 29 1 6 38 | 5 69 1 2 73 I 0 68 

32 00 1 28 00 I 25 00 1 12 00 | 3 00 
32 00 1 28 00 | 25 00 1 12 00 I 7 69 

Total 100 
22.78 

100 
22.78 

100 
22.78 

100 
22.78 

+ 
I 
I 
I 
I 
+ 
I 
I 
I 
I 

 + 
39 

Total 

339 
77.22 

100 
22.78 

439 
100.00 
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TOP NEW 

Job 11 (Automotive Mechanic) 

TABLE OF TOP BY NEW 

Frequency I 
Percent 1 
Row Pet 1 
Col Pet 1 LI 21 ■  31 41 51 61 71 Total 

0 1 70 77 | 78 I 91 1 89 1 96 1 93 594 
1 10.09 1 11.10 I 11.24 I 13.11 1 12.82 1 13.83 1 13 40 1 85.59 
1 11.78 1 12.96 I 13.13 | 15.32 1 14.98 1 16.16 1 15 66 1 
1 70.00 1 77.00 .1 78;00 I 91. Ü0 1 89.00 1 96.00 98 94 1 

1 1 30 1 23 I 22 I 9 11 1 4 1 1 1 100 
1 4.32 1 3.31 I 3:17 | 1.30 1 1.59 1 0.58 1 0 14 1 14.41 
1 30.00 1 23.00 '| 22:00 1 9.00 1 11.00 1 4.00 1 1 00 1 

30.00 1 23.00 | 22.00 | 9.00 1 11.00 1 4.00 1 1 06 1 

Total 100 100 100 100 100 100 94 694 
14.41 14.41 14.41 14.41 14.41 14.41 13 54 100.00 

TOP SIG 

TABLE OF TOP BY SIG 

Frequency| 
Percent  I 
Row Pet 1 
Col Pet 1 11 21 31 . 41 51 61 M 

1 
1 
1 
1 

1 
1 
1 
1 

Total 

0 1 
1 
1 
1 

70 
10.09 
11.78 
70.00 

1 
1 

77 | 
11.10 I 
12.96 I 
77.00 I 

78 
11.24 
13.13 
78.00 

1 
1 
1 
1 

92 
13.26 
15.49 
92.00 

1 
1 
1 
1 

88 
12.68 
14.81 
88.00 

1 
1 
1 
1 

96 
13.83 
16.16 
96.00 

1 
1 
1 
1 

13 
15 
98 

93 
40 
66 
94 

594 
85.59 

1 1 
1 
1 
1 

30 
4.32 

30.00 
30.00 

1 
1 
1 
1 

23 I 
3.31 | 

23.00 I 
23.00 I 

22 
3.17 

22.00 
22.00 

1 
1 
1 

8 
1.15 
8.00 
8.00 

1 
1 

1 

12 
1.73 

12.00 
12.00 

1 
1 
1 
1 

4 
0.58 
4.00 
4.00 

1 
1 
1 
1 

0 
1 
1 

1 
14 
00 
06 

100 
14.41 

Total 100 
14.41 

100 
14.41 

100 
14.41 

100 
14.41 

100 
14.41 

100 
14.41 13 

94 
54 

694 
100.00 

TOP GEN 

TABLE OF TOP BY GEN 

Frequency I 
Percent  | 
Row Pet  I 
Col Pet  | LI 21 31 41 51 61 71 

0 1 72 1 77 | 86 I 91 1 86 I 92 I 90 I 
10.37 1 11.10 I 12.39 I 13 11 1 12 39 I 13 26 I 12 97 | 
12.12 1 12.96 I 14.48 I 15 32 1 14 48 I 15 49 I 15 15 I 
72.00 1 77.00 | 86.00 I 91 00 1 86 00 I 92 00 I 95 74 I 

1 I 28 1 23 I 14 I 9 1 14 I 8 1 4 1 
4.03 1 3.31 | 2.02 | 1 30 1 2 02 | 1 15 I 0 58 I 

28.00 1 23.00 I 14.00 | 9 00 1 14 00 | 8 00 | 4 00 | 
28.00 1 23.00 I 14.00 I 9 00 1 14 00 I 8 00 I 4 26 I 

Total 100 
14.41 

100      100 
14.41    14.41 

100      100 
14.41    14.41 

100 
14.41 

94 
13.54 

Total 

594 
85.59 

100 
14.41 

694 
100.00 
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